
NASA Technical Memorandum 103863

The NAS Parallel Benchmarks

David Bailey, John Barton, and Thomas Lasinski, Ames Research Center, Moffett Field, California
and Horst Simon, Computer Sciences Corporation, El Segundo, California, Editors

July 1993

N/LRA
National Aeronauticsand
Space Administration

Ames Research Center
MoffettF_ld, California94035-1000

SUMMARY

A new set of benchmarks has been developed for the performance evaluation of highly parallel

supercomputers. These benchmarks consist of a set of kernels, the "Parallel Kernels," and a simulated

application benchmark. Together they mimic the computation and data movement characteristics of

large scale computational fluid dynamics (CFD) applications.

The principal distinguishing feature of these benchmarks is their "pencil and paper" specification---

all details of these benchmarks are specified only algorithmically. In this way many of the difficulties

associated with conventional benchmarking approaches on highly parallel systems are avoided.

1 GENERAL REMARKS

D. Bailey, D. Browning,* R. Carter, S. Fineberg,* and H. Simon*

1.1 Introduction

The Numerical Aerodynamic Simulation (NAS) Program, which is based at NASA Ames Research

Center, is a large scale effort to advance the state of computational aerodynamics. Specifically, the

NAS organization aims "to provide the Nation's aerospace research and development community by the

year 2000 a high-performance, operational computing system capable of simulating an entire aerospace

vehicle system within a computing time of one to several hours" (reL 1, p. 3). The successful solution

of this "grand challenge" problem will require the development of computer systems that can perform

the required complex scientific computations at a sustained rate nearly one thousand times greater

than current generation supercomputers can now achieve. The architecture of computer systems able

to achieve this level of performance will likely be dissimilar to the shared memory multiprocessing

supercomputers of today. While no consensus yet exists on what the design will be, it is likely that the

system will consist of at least 1000 processors computing in parallel.

Highly parallel systems with computing power roughly equivalent to traditional shared memory

multiprocessors exist today. Unfortunately, the performance evaluation of these systems on comparable

types of scientific computations is very difficult for several reasons. Few relevant data are available

for the performance of algorithms of interest to the computational aerophysics community on many

currently available parallel systems. Benchmarking and performance evaluation of such systems has not

kept pace with advances in hardware, software and algorithms. In particular, there is as yet no generally

accepted benchmark program or even a benchmark strategy for these systems.

The popular "kernel" benchmarks that have been used for traditional vector supercomputers, such

as the Livermore Loops (tel 2), the LINPACK benchmark (refs. 3 and 4) and the original NAS Kernels

(ref. 5), are clearly inappropriate for the performance evaluation of highly parallel machines. First of

all, the tuning restrictions of these benchmarks rule out many widely used parallel extensions. More

importantly, the computation and memory requirements of these programs do not do justice to the vastly

increased capabilities of the new parallel machines, particularly those systems that will be available by
the mid-1990s.

On the other hand, a full scale scientific application is similarly unsuitable. First of all, porting

a large program to a new parallel computer architecture requires a major effort, and it is usually hard

to justify a major research task simply to obtain a benchmark number. For that reason we believe that

the otherwise very successful PERFECT Club benchmark (ref. 6) is not suitable for highly parallel

systems. This is demonstrated by very sparse performance results for parallel machines in the recent

reports (refs. 7, 8, and 9).

*Computer Sciences Corporation, El Segundo, California. This work is supported through NASA Contract NAS 2-12961.

PRECED_N6 PAGE BLANK NOT FILMED

Alternatively, an application benchmark could assume the availability of automatic software tools

for transforming "dusty deck" source into efficient parallel code on a variety of systems. However,

such tools do not exist today, and many scientists doubt that they will ever exist across a wide range of

architectures.

Some other considerations for the development of a meaningful benchmark for a highly parallel

supercomputer are the following:

• Advanced parallel systems frequently require new algorithmic and software approaches, and

these new methods are often quite different from the conventional methods implemented in source code

for a sequential or vector machine.

• Benchmarks must be "generic" and should not favor any particular parallel architecture. This

requirement precludes the usage of any architecture-specific code, such as message passing code.

• The correctness of results and performance figures must be easily verifiable. This requirement

implies that both input and output data sets must be kept very small. It also implies that the nature of

the computation and the expected results must be specified in great detail.

• The memory size and run time requirements must be easily adjustable to accommodate new

systems with increased power.

• The benchmark must be readily distributable.

In our view, the only benchmarking approach that satisfies all of these constraints is a "paper and

pencil" benchmark. The idea is to specify a set of problems only algorithmically. Even the input data

must be specified only on paper. Naturally, the problem has to be specified in sufficient detail that a

unique solution exists, and the required output has to be brief yet detailed enough to certify that the

problem has been solved correctly. The person or persons implementing the benchmarks on a given

system are expected to solve the various problems in the most appropriate way for the specific system.

The choice of data structures, algorithms, processor allocation and memory usage are all (to the extent

allowed by the specification) left open to the discretion of the implementer. Some extension of Fortran

or C is required, and reasonable limits are placed on the usage of assembly code and the like, but

otherwise programmers are free to utilize language constructs that give the best performance possible

on the particular system being studied.

To this end, we have devised a number of relatively simple "kernels," which are specified com-

pletely in chapter 2 of this document. However, kernels alone are insufficient to completely assess the

performance potential of a parallel machine on real scientific applications. The chief difficulty is that a

certain data structure may be very efficient on a certain system for one of the isolated kernels, and yet

this data structure would be inappropriate if incorporated into a larger application. In other words, the

performance of a real computational fluid dynamics (CFD) application on a parallel system is critically

dependent on data motion between computational kernels. Thus we consider the complete reproduction

of this data movement to be of critical importance in a benchmark.

Our benchmark set therefore consists of two major components: five parallel kernel benchmarks

and three simulated application benchmarks. The simulated application benchmarks combine several

4

computationsin a manner that resembles the actual order of execution in certain important CFD appli-

cation codes. This is discussed in more detail in chapter 3.

We feel that this benchmark set successfully addresses many of the problems associated with

benchmarking parallel machines. Although we do not claim that this set is typical of all scientific

computing, it is based on the key components of several large aeroscience applications used on su-

percomputers by scientists at NASA Ames Research Center. These benchmarks will be used by the

Numerical Aerodynamic Simulation (NAS) Program to evaluate the performance of parallel computers.

1.2 Benchmark Rules

1-2.1 Definitions

In the following, the term "processor" is defined as a hardware unit capable of executing both

floating point addition and floating point multiplication instructions. The "local memory" of a pro-

cessor refers to randomly accessible memory that can be accessed by that processor in less than one

microsecond. The term "main memory" refers to the combined local memory of all processors. This

includes any memory shared by all processors that can be accessed by each processor in less than one

microsecond. The term "mass storage" refers to non-volatile randomly accessible storage media that

can be accessed by at least one processor within forty milliseconds. A "processing node" is defined

as a hardware unit consisting of one or more processors plus their local memory, which is logically a

single unit on the network that connects the processors.

The term "computational nodes" refers to those processing nodes primarily devoted to high-speed

floating point computation. The term "service nodes" refers to those processing nodes primarily devoted

to system operations, including compilation, linking and communication with external computers over

a network.

1.2.2 General rules

Implementations of these benchmarks must be based on either Fortran-77 or C, although a wide

variety of parallel extensions are allowed. This requirement stems from the observation that Fortran and

C are the most commonly used programming languages by the scientific parallel computing community

at the present time. If in the future, other languages gain wide acceptance in this community, they will be

considered for inclusion in this group. Assembly language and other low-level languages and constructs

may not be used, except that certain specific vendor-supported assembly-coded library routines may be

called (see section 1.2.3).

We are of the opinion that such language restrictions are necessary, because otherwise considerable

effort would be made by benchmarkers in low-level or assembly-level coding. Then the benchmark

results would tend to reflect the amount of programming resources available to the benchmarking orga-

nization, rather than the fundamental merits of the parallel system. Certainly the mainstream scientists

that these parallel computers are intended to serve will be coding applications at the source level, almost

certainly in Fortran or C, and thus these benchmarks are designed to measure the performance that can

be expected from such code.

Accordingly, the following rules must be observed in any implementations of the NAS Parallel

Benchmarks:

• All floating point operations must be performed using 64-bit floating point arithmetic.

• All benchmarks must be coded in either Fortran-77 (ref. 10) or C (ref. 11), with certain approved

extensions.

• Implementation of the benchmarks may not include a mix of Fortran-77 and C code--one or

the other must be used.

• Any extension of Fortran-77 that is in the Fortran-90 draft dated June 1990 or later (ref. 12) is

allowed.

• Any extension of Fortran-77 that is in the Parallel Computer Fortran (PCF) draft dated March

1990 or later (ref. 13) is allowed.

• Any extension of Fortran-77 that is in the High Performance Fortran (HPF) draft dated January

1992 or later (ref. 14) is allowed.

• Any language extension or library routine that is employed in any of the benchmarks must be

supported by the vendor and available to all users.

• Subprograms and library routines not written in Fortran or C may only perform certain functions,

as indicated in the next section.

• All rules apply equally to subroutine calls, language extensions and compiler directives (i.e.,

special comments).

1.2.3 Allowable Fortran extensions and library routines

Fortran extensions and library routines are also permitted that perform the following:

• Indicate sections of code that can be executed in parallel or loops that can be distributed among

different computational nodes.

• Specify the allocation and organization of data among or within computational nodes.

• Communicate data between processing nodes.

• Communicate data between the computational nodes and service nodes.

• Rearrange data stored in multiple computational nodes, including constructs to perform indirect

addressing and array transpositions.

• Synchronize the action of different computational nodes.

• Initialize for a data communication or synchronization operation that will be performed or

completed later.

6

. Perform high-speedinput or output operationsbetweenmain memory and the mass storage

system.

• Perform any of the following array reduction operations on an array either residing within a

single computational node or distributed among multiple nodes: +, x, MAX, HZHt AND, OR, XOR.

• Combine communication between nodes with one of the operations listed in the previous item.

• Perform any of the following computational operations on arrays either residing within a single

computational node or distributed among multiple nodes: dense or sparse matrix-matrix multiplication,

dense or sparse matrix-vector multiplication, one-dimensional, two-dimensional or three-dimensional

fast Fourier transforms, sorting, block tri-diagonal system solution and block penta-diagonal system

solution. Such routines must be callable with general array dimensions.

1.3 Sample Codes

The intent of this paper is to completely specify the computation to be carried out. Theoretically, a

complete implementation, including the generation of the correct input data, could be produced from the

information in this paper. However, the developers of these benchmarks are aware of the difficulty and

time required to generate a correct implementation from scratch in this manner. Furthermore, despite

several reviews, ambiguities in this technical paper may exist that could delay implementations.

In order to reduce the number of difficulties and to aid the benchmarking specialist, Fortran-77

computer programs implementing the benchmarks are available. These codes are to be considered

examples of how the problems could be solved on a single processor system, rather than statements of

how they should be solved on an advanced parallel system. The sample codes actually solve scaled

down versions of the benchmarks that can be run on many current generation workstations. Instructions

are supplied in comments in the source code on how to scale up the program parameters to the full size

benchmark specifications.

These programs, as well as the benchmark document itself, are available from the Systems Devel-

opment Branch in the NAS Systems Division. Mail Stop 258-5, NASA Ames Research Center, Moffett

Field, CA 94035-1000, attn: NAS Parallel Benchmark Codes. The sample codes are provided on

Macintosh floppy disks and contain the Fortran source codes, "ReadMe" files, input data files, and ref-

erence output data files for correct implementations of the benchmark problems. These codes have been

validated on a number of computer systems ranging from conventional workstations to supercomputers.

Three classes of problems are defined in this document. These will be denoted "Sample Code,"

"Class A," and "Class B," since the three classes differ mainly in the sizes of principal arrays. Tables 1.1,

1.2, and 1.3 give the problem sizes, floating point operation counts, memory requirements (measured in

Mw), run time and performance rates (measured in MFLOPS) for each of the eight benchmarks and for

the Sample Code, Class A, and Class B problem sets. These statistics are based on implementations on

one processor of a Cray Y-ME The operation count for the Integer Sort benchmark is based on integer

operations rather than floating-point operations. The entries in the "Problem Size" columns are sizes of

key problem parameters. Complete descriptions of these parameters are given in chapters 2 and 3.

7

Table I.I. NAS Parallel Benchmarks Sample Code Statistics

Benchmark code Problem Memory Time

size (Mw) (see)
Embarrassingly parallel (EP) 2 _4

Multigrid (MG) 323

Conjugate gradient (CG) 1400

3-D FFT PDE (FT) 643

Integer sort (IS) 216

LU solver (LU) 123

Pentadiagonal solver (SP) 123

Block tridiagonal solver (BT) 123

MFLOPS

0.1 11.6 120

0.1 0.1 128

1.0 1.2 63

2.0 1.2 160

0.3 0.2 30.5

0.3 3.5 28

0.2 7.2 24

0.3 7.2 34

Table 1.2. NAS Parallel Benchmarks Class A Statistics

Benchmark code Problem Memory Tune

size 0 w) (sec)
Embarrassingly parallel (EP)

Multigrid (MG)

Conjugate gradient (CG)

3-D FFT PDE (FI')

Integer sort (IS)

LU solver (LU)

Pentadiagonal solver (SP)

Block tridiagonal solver (BT)

MFLOPS

22a 1 151 147

2563 57 54 154

14000 10 22 70

2562 x 128 59 39 192

223 26 21 37.2

64 a 8 344 189

643 6 806 175

643 6 923 192

Table 1.3. NAS Parallel Benchmarks Class B Statistics

Benchmark code Problem Memory Time

size t w) (scc)
Embarrassingly parallel (EP)

Multigrid (MG)

Conjugate gradient (CG)

MFLOPS

3-D FFI" PDE (VI')

Integer sort (IS)

LU solver (LU)

Pentadiagonal solver (SP)

Block tridiagonal solver (BT)

2 ao 18 512 197

2563 59 114 165

75000 97 998 55

512x256x 256 162 366 195

225 114 126 25

1023 121 1973 162

1023 36 2160 207

1023 160 3554 203

8

1.4 Submission of Benchmark Results

It must be emphasized that the sample codes described in section 1.3 are not the benchmark codes,

but only implementation aids. For the actual benchmarks, the sample codes must be scaled to larger

problem sizes. The sizes of the current benchmarks were chosen so that implementations are possible

on currently available supercomputers. As parallel computer technology progresses, future releases of

these benchmarks will specify larger problem sizes.

The authors and developers of these benchmarks encourage submission of performance results for

the problems listed in table 1.2. Periodic publication of the submitted results is planned. Benchmark

results should be submitted to the Applied Research Branch, NAS Systems Division, Mail Stop T045-1,

NASA Ames Research Center, Moffett Field, CA 94035, attn: NAS Parallel Benchmark Results. A

complete submission of results should include the following:

• A detailed description of the hardware and software configuration used for the benchmark runs.

• A description of the implementation and algorithmic techniques used.

• Source listings of the benchmark codes.

• Output listings from the benchmarks.

9

REFERENCES

1. Numerical Aerodynamic Simulation Program Plan. NAS Systems Division, Ames Research Center,

October 1988.

2. McMahon, F. H.: The Livermore Fortran Kernels: A Computer Test of the Numerical Performance

Range. Technical Report UCRL-53745, Lawrence Livermore National Laboratory, Livermore,

Calif., Dec. 1986.

3. Dongarra, J. J.: The UNPACK Benchmark: An Explanation. SuperComputing, Spring 1988,

pp. 10-14.

4. Dongarra, J. J.: Performance of Various Computers Using Standard Linear Equations Software in a

Fortran Environment. TR MCSRD 23, Argonne National Laboratory, March 1988.

5. Bailey, D. H.; and Barton, J.: The NAS Kernel Benchmark Program. Technical Report 86711,

Ames Research Center, Moffett Field, Calif., August 1985.

6. Berry, M.; et al. The Perfect Club Benchmarks: Effective Performance Evaluation of Supercom-

puters. The International Journal of Supercomputer Applications, vol. 3, 1989, pp. 5-40.

7. Pointer, L.: PERFECT Report 1. Technical Report 896, CSRD, Univ. of Illinois, Urbana, Ill., July

1989.

8. Pointer, L.: PERFECT Report 2: Performance Evaluation for Costeffective Transformations. Tech-

nical Report 964, CSRD, Univ. of Illinois, Urbana, Ill., March 1990.

9. Cybenko, G.; Kipp, L.; Pointer, L.; and Kuck, D.: Supercomputer Performance Evaluation and the

Perfect Benchmarks. Technical Report 965, CSRD, Univ. of Illinois, Urbana, Ill., March 1990.

10. American National Standard Programming Language Fortran X3.9-1978. American National Stan-

dards Institute, 1430 Broadway, New York, NY, 1990.

11. Draft Proposed C ANSI Standard X3J3-S8115. American National Standards Institute, 1430 Broad-

way, New York, NY, 1990.

12. Draft proposed Fortran 90 ANSI Standard X3Jll.159-1989. American National Standards Institute,

1430 Broadway, New York, NY, 1990.

13. PCF Fortran Extensions--Draft Document, Revision 2.11. Parallel Computing Forum (PCl_, c/o

Kuck and Associates, 1906 Fox Drive, Champaign, Illinois 61820, March 1990.

14. High Performance Fortran (HPF) Language Specification, Version 1.0 Draft. Center for Research

in Parallel Computing, P.O. 1892, Rice University, Houston, TX 77251, January 1993.

10

2 THE KERNEL BENCHMARKS

D. Bailey, E. Barszcz, L. Dagum,* P. Frederickson, t IL Schreiber, t and H. Simon*

2.1 Overview

After an evaluation of a number of large scale CFD and computational aerosciences applications

on the NAS supercomputers at NASA Ames, a number of kernels were selected for the benchmark.

These were supplemented by some other kernels which are intended to test specific features of parallel

machines. The following benchmark set was then assembled:

EP: An "embarrassingly parallel" kernel. It provides an estimate of the upper achievable limits

for floating point performance, i.e., the performance without significant interprocessor communication.

MG: A simplified multigrid kernel. It requires highly structured long distance communication and

tests both short and long distance data communication.

CG: A conjugate gradient method is used to compute an approximation to the smallest eigenvalue

of a large, sparse, symmetric positive definite matrix. This kernel is typical of unstructured grid com-

putations in that it tests irregular long distance communication, employing unstructured matrix vector

multiplication.

FT: A 3-D partial differential equation solution using FFTs. This kernel performs the essence of

many "spectral" codes. It is a rigorous test of long-distance communication performance.

IS: A large integer sort. This kernel performs a sorting operation that is important in "particle

method" codes. It tests both integer computation speed and communication performance.

These kernels involve substantially larger computations than previous kernel benchmarks, such as

the Livermore Loops or Linpack, and therefore they are more appropriate for the evaluation of parallel

machines. The Parallel Kernels in particular are sufficiently simple that they can be implemented

on a new system without unreasonable effort and delay. Most importantly, as emphasized earlier,

this set of benchmarks incorporates a new concept in performance evaluation, namely that only the

computational task is specified, and that the actual implementation of the kernel can be tailored to the

specific architecture of the parallel machine.

In this chapter the Parallel Kernel benchmarks are presented, and the particular rules for allowable

changes are discussed. Future reports will describe implementations and benchmarking results on a

number of parallel supercomputers.

*Computer Sciences Corporation. This work is supported through NASA Contract NAS 2-12961.

fResearch Institute for Advanced Computer Science (RIACS), Ames Research Center. This work is supported by NAS

Systems Division through Cooperative Agreement Number NCC 2-387.

11

2.2 Description of the Kernels

2.2.1 Kernel EP: An embarrassingly parallel benchmark

D. Bailey and P. Frederickson

Brief Statement of Problem

Generate pairs of Gaussian random deviates according to a specific scheme described below and

tabulate the number of pairs in successive square annuli.

Detailed Description

Set n - 228, a - 513 and s - 271,828, 183. Generate the pseudorandom floating point values rj

in the interval (0, 1) for i _< j _< 2n using the scheme described in section 2.3. Then for 1 _< j _< n set

zj = 2r2j_ 1 - 1 and yj = 2r2j - 1. Thus zj and yj are uniformly distributed on the interval (-1, 1).

Next set k - 0. Then beginning with j -- 1, test to see if tj - x 2 + y2 _< 1. If not, reject this pair

and proceed to the next j. If this inequality holds, then set k 4-- k + 1, X k = zj_/(-21ogtj)flj and

Yk = yj¢(-21ogtj)/tj, where log denotes the natural logarithm. Then X k and Yk are independent
Gaussian deviates with mean zero and variance one. Approximately nTr/4 pairs will be constructed in

this manner. See reference 2, page 117 for additional discussion of this scheme for generating Gaussian

deviates.

Finally, for 0 < l < 9 tabulate Ql as the count of the pairs (Xk, Yk) that lie in the square annulus

t < max(lXkl, IYkl)< Z+ 1, and output the ten QI counts.

This completes the definition of the Class A problem. The Class B problem is the same except

that n = 230.

Verification Test

Each of the ten Qt counts must agree exactly with reference values. For this value of n, the

reference counts are as follows:

12

Class A Class B

z Qt Qz
0 98257395 393058470

1 93827014 375280898

2 17611549 70460742

3 1110028 4438852

4 26536 105691

5 245 948

6 0 5

7 0 0

8 0 0

9 0 0

Operations to be Timed

All of the operations described above are to be timed, including tabulation and output.

Other Features

• This problem is typical of many Monte Carlo simulation applications.

• The only requirement for communication is the combination of the 10 sums from various

processors at the end.

• Separate sections of the uniform pseudorandom numbers can be independently computed on

separate processors. See section 2.3 for details.

• The smallest distance between a floating-point value and a nearby integer among the rj, Xk and

Yk values is 3.2 x 10 -11, which is well above the achievable accuracy using 64 bit floating arithmetic

on existing computer systems. Thus if a truncation discrepancy occurs, it implies a problem with the

system hardware or software.

2.2.2 Kernel MG: a simple 3D multigrid benchmark

E. Barszcz and P. Frederickson

Brief Statement of Problem

Four iterations of the V-cycle multigrid algorithm described below are used to obtain an approximate

solution u to the discrete Poisson problem

2 _. V

on a 256 x 256 x 256 grid with periodic boundary conditions.

13

Detailed Description

Set v -- 0 except at the twenty points listed in table 2.1. where v = +1. (These points were

determined as the locations of the ten largest and ten smallest pseudorandom numbers generated as in

Kernel FT.)

Table 2.1. Nonzero values for v

vid,k (i,j,k)
-1.0 211,154, 98 102,138,112 101,156, 59 17,205, 32 92, 63,205

199, 7,203 250,170,157 82,184,255 154,162, 36 223, 42,240

+1.0 57,120,167 5,118,175 176,246,164 45,194,234 212, 7,248

115,123,207 202, 83,2O9 203, 18,198 243,172, 14 54,209, 40

Begin the iterative solution with u = 0. Each of the four iterations consists of the following two

steps, in which k = 8 = 1og2(256):

r=v-Au

u=u+Mkr

(evaluate residual)

(apply correction)

Here M k denotes the V-cycle multigrid operator, defined in table 2.2. In this definition A denotes the

Table 2.2. V-cycle multigfid operator

z k = Mkrk :

if k> 1

else

rk_ 1 = P r k (restrict residual)

Zk_ 1 -- Mk-lrk_l (recursive solve)

Z k = Q Zk_ 1 (prolongate)

r k = r k -- A z k (evaluate residual)

Zk = z k + S rk (apply smoother)

Zl = S rl. (apply smoother)

trilinear finite element discretization of the Laplacian V 2 normalized as indicated in table 2.3, where

the coefficients of P, Q, and S are also listed.

In this table co denotes the central coefficient of the 27-point operator, when these coefficients are

arranged as a 3 × 3 × 3 cube. Thus co is the coefficient that multiplies the value at the gridpoint (i,j,k),

while el multiplies the six values at grid points which differ by one in exactly one index, e2 multiplies

the next closest twelve values, those that differ by one in exactly two indices, and e3 multiplies the eight

values located at grid points that differ by one in all three indices. The restriction operator P given in

14

Table 2.3. Coefficients for trilinear finite element discretization

C co Cl c2 c3

A -8.0/3.0 0.0 1.0/6.0 1.0/12.0

P 1.0/2.0 1.0/4.0 1.0/8.0 1.0/16.0

Q 1.0 1.0/2.0 1.0/4.0 1.0/8.0

S(a) -3.0/8.0 +1.0/32.0 -1.0/04.0 0.0

S(b) -3.0/17.0 +1.0/33.0 -1.0/61.0 0.0

this table is the trilinear projection operator of finite element theory, normalized so that the coefficients of

all operators are independent of level, and is half the transpose of the trilinear interpolation operator Q.

Verification Test

Class A: Evaluate the residual after four iterations of the V-cycle multigrid algorithm using the

coefficients from the S(a) row for the smoothing operator S, and verify that its L2 norm

llrli2= [(_ rij,k)/2,563]I/2

ij,k

agrees with the reference value

within an absolute tolerance of 10 -14 .

0.2433365309 x 10-05

Class B: The array size is the same as for Class A (256), but 20 iterations must be performed using

the coefficients from the SCo) row for the smoothing operator S. The output L2 norms must agree with

the reference value
0.180056440132 x 10 -°5

within an absolute tolerance of 10 -14 .

Timing

Start the clock before evaluating the residual for the first time, and after initializing u and v. Stop

the clock after evaluating the norm of the final residual, but before displaying or printing its value.

2.2.3 Kernel CG: Solving an unstructured sparse linear system by the conjugate gradient method

R. Schreiber, H. Simon, and R. Carter

Brief Statement of Problem

This benchmark uses the inverse power method to find an estimate of the largest eigenvalue of a

symmetric positive definite sparse matrix with a random pattern of nonzeros.

15

Detailed Description

In thefollowing, A denotes the sparse matrix of order n, lower case Roman letters are vectors, zj

is the jth component of the vector x, and superscript "T" indicates the usual transpose operator. Lower

case Greek letters are scalars. We denote by IlxlltheEuclidean norm of a vector x, Ilxll- _. All

quantities are real. The inverse power method is to be implemented as follows:

x = [1, 1,..., lIT;

(start timing here)

DO it = 1, niter

Solve the system Az = z and return Ilrll, as described below
¢ -- A + ll(zrz)

Print it, Ilrll, and ¢
x- z/llzll

ENDDO

(stop timing here)

Values for the size of the system n, number of outer iterations niter, and the shift A for three

different problem sizes are provided in table 2.4. The solution z to the linear system of equations Az = x

is to be approximated using the conjugate gradient (CG) method. This method is to be implemented as

follows:

z=0

r--x

p = rTr

p=r

DO i = 1,25

q= Ap

a = p/(pTq)

z=z+ap

po=p

r ---- r--o_q

p = rTr

Z= p/po
p=r + l_p

ENDDO

compute residual norm explicitly: Ilrll = IIx- Azll

16

Table 2.4. Input parameters for CG benchmark

Size n niter NONZER A

Sample 1400 25 7 10
Class A 14000 25 II 20

Class B 75000 75 13 60

Verification Test

The program should print, at every outer iteration of the power method, the iteration number it,

the eigenvalue estimate (, and the Euclidean norm IIr[[of the residual vector at the last CG iteration

(the vector r in the discussion of CG above). For each size problem the computer value of (must

agree with the reference value _REF within a tolerance of 1.0 x 10 -1°, i.e., [(- _REFI < 1.0 x 10 -1°.

These reference values _REF are provided in table 2.5.

Table 2.5. Output parameters for CG benchmark

Computed FLOP mem

Size nonzeros x 10 9 (MW)

Sample 78148 0.111 1.0
Class A 1853104 2.50 10.0

Class B 13708072 54.9 96.7

QIEF

8.59717750786234

17.13023505380784

22.712745482078

Timing

The reported time must be the wall-clock time required to compute all niter iterations and print

the results, after the matrix is generated and downloaded into the system, and after the initialization of

the starting vector x.

It is permissible initially to reorganize the sparse matrix data structure (arow, acol, aelt), which

is produced by the matrix generation routine (described below), to a data structure better suited for the

target machine. The original or the reorganized sparse matrix data structure can then be subsequently

used in the conjugate gradient interation. Time spent in the initial reorganization of the data structure

will not be counted towards the benchmark time.

It is also permissible to use several different data structures for the matrix A, keep multiple copies

of the matrix A, or to write A to mass storage and read it back in. However, the time for any data

movements, which take place within the power iterations (outer iteration) or within the conjugate gradient

iterations (inner iteration), must be included in the reported time.

17

Other Features

The input sparse matrix A is generated by a Fortran 77 subroutine called makea, which is provided

on the sample code disk described in section 1.3. In this program, the random number generator is

initialized with a = 513 and s = 314159265. Then the subroutine makea is called to generate the

matrix A. This program may not be changed. In the makea subroutine the matrix A is represented by

the following Fortran 77 variables:

N (INTEGER)---the number of rows and columns

sz (XSTeC_'.R)--the number of nonzeros

A (s.eaz*e)---array of NZ nonzeros

XA (xsTeGsR)---array of NZ row indices. Element A(K) is in row IA(K) for all 1 _< K < NZ.

JA (INTEGER)_ay of N+I pointers to the beginnings of columns. Column J of the matrix is stored

in positions JA(J) through JA(J+I)-I of A and IA. JA(N+I) contains NZ+I.

X"

The code generates the matrix as the weighted sum of N outer products of random sparse vectors

N

A = _ COiXXT
i=1

where the weights coi are a geometric sequence with Wl -- 1 and the ratio chosen so that coN = 0.1.

The vectors z are chosen to have a few randomly placed nonzeros, each of which is a sample from

the uniform distribution on (0, 1). Furthermore, the i th element of zi is set to 1/2 to insure that A

cannot be structurally singular. Finally, 0.1 is added to the diagonal of A. This results in a matrix

whose condition number (the ratio of its largest eigenvalue to its smallest) is roughly 10. The number

of randomly chosen elements of z is provided for each problem size in table 2.4, in the "NONZER"

column. The final number of nonzeros of A are listed in table 2.5 in the "computed nonzeros" column.

As implemented in the sample codes, the shift)_ of the main diagonal of A is the final task in subroutine

makea. Values are provided for A in table 2.4.

The data structures used are these. First, a list of triples (arow, acol, aelt) is constructed. Each of

these represents an element in row i = arow, column j = acol, with value a/j = aelt. When the arow

and acol entries of two of these triples coincide, then the values in their aelt fields are added together

in creating a O. The process of assembling the matrix data structures from the list of triples, including

the process of adding coincident entries, is done by the subroutine sparse, which is called by makea

and is also provided. For examples and more details on this sparse data structure, consult section 2.7

of the book by Duff, Erisman, and Reid (ref. 3).

18

2.2.4 Kernel FT. A 3-D fast-Fourier transform partial differential equation benchmark

D. Bailey and P. Frederick.son

Brief Statement of Problem

Numerically solve a certain partial differential equation (PDE) using forward and inverse FFTs.

Detailed Description

Consider the PDE

O_(X' g) -- aV2U(X, t)
Ot

where x is a position in three-dimensional space. When a Fourier transform is applied to each side, this

equation becomes

Ov(z, t)
= -4aTr21zl2v(z, t)

Ot

where v(z, t) is the Fourier transform of u(x, t). This has the solution

v(z, t) = e-4a_r21zl2tv(z, O)

Now consider the discrete version of the original PDE. Following the above steps, it can be solved

by computing the forward 3-D discrete Fourier transform (DFT) of the original state array u(x, 0),

multiplying the results by certain exponentials, and then performing an inverse 3-D DFT. The forward

DFT and inverse DFT of the nl x n2 x n3 array u are defined respectively as

n3--1 n2-1 nl--I

Fq,r,s(U)= Y_ Y[_ _ Uj,k,le-2_rijq/nle-2_rikr/n2e -2_rils/n3

/=o k=O j=0

n3--1 n2-- 1 n 1 -- 1 ,, , ,o21rijq/n 1 ,,21rikr /n 2 s,2_rils/n3

1 Zq'r's(U) -- nln2n3 = k=O j=O

The specific problem to be solved for the Class A benchmark is as follows. Set n I = 256, n2 =

256, and n 3 = 128. Generate 2nln2n3 64-bit pseudorandom floating point values using the pseudoran-

dora number generator in section 2.3, starting with the initial seed 314159265. Then fill the complex

array Uj,k,l, 0 <_ j < nl, 0 _< k < n2, 0 _< 1 < n3, with this data, where the first dimension varies

most rapidly as in the ordering of a 3-D Fortran array. A single complex number entry of U consists of

two consecutive pseudorandomly generated results. Compute the forward 3-D DFT of U, using a 3-D

fast Fourier transform (FYr) routine, and call the result V. Set a = 10 -6 and set t = 1. Then compute

Wj,k, l = e-4_Tr2(32 +_2 +[2)t Vj,k,l

19

wherej is defined asj for 0 < j < nl/2 and j-n1 for nl/2 < j < nl. The indices k and

are similarly defined with n 2 and n3. Then compute an inverse 3-D DFT on W, using a 3-D FFT
r-,1023 Xroutine, and call the result the array X. Finally, compute the complex checksum z.,j_-0 q,r,8 where

q -- j (mod nl), r - 3j (mod n2) and s - 5j (mod n3). After the checksum for this t has

been output, increment t by one. Then repeat the above process, from the computation of W through

the incrementing of t, until the step t - N has been completed. In this benchmark, N - 6. The V

array and the array of exponential terms for t - 1 need only be computed once. Note that the array of

exponential terms for t > 1 can be obtained as the t-th power of the array for t ----1.

This completes the definition of the Class A problem. The Class B problem is the same except

that n I m 512, n2 ----256, n3 = 256, and N = 20.

Any algorithm may be used for the computation of the 3-D FFTs mentioned above. One algorithm

is the following. Assume that the data in the input nl x n2 x n3 complex array A are organized so that

for each k and l, all elements of the complex vector (Aj, k,l, 0 _< j < nl) are contained within a single

processing node. First perform an nl-point 1-D FFT on each of these n2n3 complex vectors. Then

transpose the resulting array into an n2 x n3 x nl complex array B. Next, perform an n2-point 1-D

FFT on each of the nZnl first-dimension complex vectors of B. Again note that each of the 1-D FFTs

can be performed locally within a single node. Then transpose the resulting array into an n3 x nl x n 2

complex array C. Finally, perform an nz-point 1-D FFT on each of the nln2 first-dimension complex

vectors of C. Then transpose the resulting array into an nl x n2 x n3 complex array D. This array D

is the final 3-D FFT result.

Algorithms for performing an individual 1-D complex-to-complex FFT are well known and will

not be presented here. Readers are referred to references 4, 5, 6, 7, and 8 for details. It should be noted
that some of these FFTs are "unordered" FFTs, i.e., the results are not in the correct order but instead

are scrambled by a bit-reversal permutation. Such FFTs may be employed if desired, but it should be

noted that in this case the ordering of the exponential factors in the definition of Wj, k, l above must

be similarly scrambled in order to obtain the correct results. Also, the final result array X may be

scrambled, in which case the checksum calculation will have to be changed accordingly.

It should be noted that individual 1-D FFTs, array transpositions, and even entire 3-D FFT operations

may be performed using vendor-supplied library routines. See sections 1.2.2 and 1.2.3 for details.

Operations to be Timed

All of the above operations, including the checksum calculations, must be timed.

Verification Test

The N complex checksums must agree with reference values to within one part in 1012. For the

parameter sizes specified above, the reference values are as follows:

20

Class A

t Real Part Imaginary Part

1 504.6735008193 511.4047905510

2 505.9412319734 509.8809666433

3 506.9376896287 509.8144042213

4 507.7892868474 510.1336130759

5 508.5233095391 510.4914655194

6 509.1487099959 510.7917842803

Class B

t Real Part Imaginary Part

1 517.7643571579 507.7803458597

2 515.4521291263 508.8249431599

3 514.6409228649 509.6208912659

4 514.2378756213 510.1023387619

5 513.9626667737 510.3976610617

6 513.7423460082 510.5948019802

7 513.5547056878 510.7404165783

8 513.3910925466 510.8576573661

9 513.2470705390 510.9577278523

10 513.1197729984 511.0460304483

11 513.0070319283 511.1252433800

12 512.9070537032 511.1968077718

13 512.8182883502 511.2616233064

14 512.7393733383 511.3203605551

15 512.6691062020 511.3735928093

16 512.6064276004 511.4218460548

17 512.5504076570 511.4656139760

18 512.5002331720 511.5053595966

19 512.4551951846 511.5415130407

20 512.4146770029 511.5744692211

Other Features

• 3-D FFTs are a key part of certain CFD applications, notably large eddy turbulence simulations.

• The 3-D FFT steps require considerable communication for operations such as array

transpositions.

2.2.5 Kernel IS: Parallel sort over small integers

L Dagum

Brief Statement of Problem

Sort N keys in parallel. The keys are generated by the sequential key generation algorithm given

below and initially must be uniformly distributed in memory. The initial distribution of the keys can

have a great impact on the performance of this benchmark, and the required distribution is discussed in

detail below.

Definitions

A sequence of keys, {Ki I i = 0, 1,..., N - 1}, will be said to be sorted if it is arranged in

non-descending order, i.e., Ki <_ Ki+l <_ Ki+2 The rank of a particular key in a sequence is

the index value i that the key would have if the sequence of keys were sorted. Ranking, then, is the

21

process of arriving at a rank for all the keys in a sequence. Sorting is the process of permuting the the

keys in a sequence to produce a sorted sequence. If an initially unsorted sequence, Ko, K1,..., KN-1

has ranks r(0),r(1),... ,r(N- 1), the sequence becomes sorted when it is rearranged in the order

Kr(0) , Kr(1),... , Kr(N_I). Sorting is said to be stable if equal keys retain their original relative order.

In other words, a sort is stable only if r(i) < r(j) whenever Kr(i) = Kr(j) and i < j. Stable sorting

is not required for this benchmark.

Memory Mapping

The benchmark requires ranking an unsorted sequence of N keys. The initial sequence of keys

will be generated in an unambiguous sequential manner as described below. This sequence must be

mapped into the memory of the parallel processor in one of the following ways depending on the type

of memory system. In all cases, one key will map to one word of memory. Word size must be no less

than 32 bits. Once the keys are loaded onto the memory system, they are not to be moved or modified

except as required by the procedure described in the Procedure subsection.

Shared Global Memory All N keys initially must be stored in a contiguous address space. If Ai is

used to denote the address of the i th word of memory, then the address space must be [Ai, Ai+N-1].

The sequence of keys, K0, K1,..., KN-1, initially must map to this address space as

Ai+j_---MEM(Kj) for j=0,1,...,N-1 (2.1)

where MEM(Kj) refers to the address of Kj.

Distributed Memory In a distributed memory system with p distinct memory units, each memory unit

initially must store Np keys in a contiguous address space, where

Np = Nip (2.2)

If Ai is used to denote the address of the i th word in a memory unit, and if Pj is used to denote

the jth memory unit, then P1 N Ai will denote the address of the ith word in the jth memory unit.

Some initial addressing (or "ordering") of memory units must be assumed and adhered to throughout

the benchmark. Note that the addressing of the memory units is left completely arbitrary. If N is not

evenly divisible by p, then memory units {Pj [j = 0, 1,..., p- 2} will store Np keys, and memory

unit Pp-1 will store Nv/, keys, where now

gp = LN/p+ 0.53

N/w= N-(p- 1)N ,

(2.3)

(2.4)

In some cases (in particular if p is large) this mapping may result in a poor initial load balance with

NI_ > > Np. In such cases it may be desirable to use p_ memory units to store the keys, where p_ < p.

This is allowed, but the storage of the keys still must follow either equation 2.2 or equations 2.3-2.4

with pt replacing p. In the following we will assume N is evenly divisible by p. The address space in an

individual memory unit must be [Ai, Ai+Np-1]. If memory units are individually hierarchical, then Np

22

keysmust bestoredin a contiguousaddressspacebelonging to a single memory hierarchy and Ai then

denotes the address of the i th word in that hierarchy. The keys cannot be distributed among different

memory hierarchies until after timing begins. The sequence of keys, K0, K1,..., KN-1, initially must

map to this distributed memory as

PkAAi+j,-.-MEM(KkN_,+j) for j=O,1,...,Np-1

and k = O, 1,...,p- 1

where MEM(KkNp+j) refers to the address of KkNp+ j. If N is not evenly divisible by p, then the

mapping given above must be modified for the case where k = p - 1 as

Pp-1 n Ai+ j ,--- MEM(Ko,_.I)Np+j) for j = O, 1,..., Npp - 1. (2.6)

Hierarchical Memory All N keys initially must be stored in an address space belonging to a single

memory hierarchy which will here be referred to as the main memory. Note that any memory in the

hierarchy which can store all N keys may be used for the initial storage of the keys, and the use of

the term "main memory" in the description of this benchmark should not be confused with the more

general definition of this term in section 1.2.1. The keys cannot be distributed among different memory

hierarchies until after timing begins. The mapping of the keys to the main memory must follow one of

either the shared global memory or the distributed memory mappings described above.

The benchmark requires computing the rank of each key in the sequence. The mappings described

above define the initial ordering of the keys. For shared global and hierarchical memory systems, the

same mapping must be applied to determine the correct ranking. For the case of a distributed memory

system, it is permissible for the mapping of keys to memory at the end of the ranking to differ from the

initial mapping only in the following manner: the number of keys mapped to a memory unit at the end

of the ranking may differ from the initial value, Np. It is expected, in a distributed memory machine,

that good load balancing of the problem will require changing the initial mapping of the keys and for

this reason a different mapping may be used at the end of the ranking. If Npk is the number of keys

in memory unit Pk at the end of the ranking, then the mapping which must be used to determine the

correct ranking is given by

PknAi÷j _ MEM(r(kNp_ +j)) for j=O, 1,...,Npk- 1

and k-O, 1,...,p-1 (2.7)

where r(kNpk + j) refers to the rank of key KkNpk+j. Note, however, this does not imply that the

keys, once loaded into memory, may be moved. Copies of the keys may be made and moved, but the

original sequence must remain intact such that each time the ranking process is repeated (Step 4 of

Procedure) the original sequence of keys exists (except for the two modifications of Step 4a) and the

same algorithm for ranking is applied. Specifically, knowledge obtainable from the communications

pattern carried out in the first ranking cannot be used to speed up subsequent rankings and each iteration

of Step 4 should be completely independent of the previous iteration.

23

Key Generation Algorithm

The algorithm for generating the keys makes use of the pseudorandom number generator described

in section 2.3. The keys will be in the range [0, Bmaz). Let r/ be a random fraction uniformly

distributed in the range [0, 1], and let Ki be the i th key. The value of Ki is determined as

LB (r4 +o + r4 +1+ + r4i+3)/4J for i = 0,1,..., N - 1. (2.8)

Note that Ki must be an integer and L'J indicates truncation. Four consecutive pseudorandom numbers

from the pseudorandom number generator must be used for generating each key. All operations before

the truncation must be performed in 64-bit double precision. The random number generator must be

initialized with s = 314159265 as a starting seed.

Partial Verification Test

Partial verification is conducted for each ranking performed. Partial verification consists of com-

paring a particular subset of ranks with the reference values. The subset of ranks and the reference

values are given in table 2.6. Note that the subset of ranks is selected to be invariant to the ranking

algorithm (recall that stability is not required in the benchmark). This is accomplished by selecting for

verification only the ranks of unique keys. If a key is unique in the sequence (i.e., there is no other

equal key), then it will have a unique rank despite an unstable ranking algorithm. The memory mapping

described in the Memory Mapping subsection must be applied.

Full Verification Test

Full verification is conducted after the last ranking is performed. Full verification requires the

following:

1. Rearrange the sequence of keys, {Ki [i = O, 1,..., N - 1}, in the order {Kj I J =

r(0),r(1),... ,r(N- 1)}, where r(0), r(1),... ,r(N- 1) is the last computed sequence of ranks.

2. For every Ki from i = 0... N - 2 test that Ki _< Ki+l.

If the result of this test is true, then the keys are in sorted order. The memory mapping described in the

Memory Mapping subsection must be applied.

Table 2.6. Values to be used for partial verification

Rank (full) Full scale Rank (sample) Sample code

r(2112377) 104 -4- i r(48427) 0 -4-

r(662041) 17523 -4- i r(17148) 18 + i

r(5336171) 123928 4- i r(23627) 346 -4- i

r(3642833) 8288932 - i r(62548) 64917 - i

r(4250760) 8388264 - i r(4431) 65463 - i

24

Proogdure

1. In a scalar sequential manner and using the key generation algorithm described above, generate

the sequence of N keys.

2. Using the appropriate memory mapping described above, load the N keys into the memory

system.

3. Begin timing.

4. Do, for i - 1 to Imaz

a. Modify the sequence of keys by making the following two changes:

K/_--- i

Ki+l,_,,_z *....--(Bmaz - i)

b. Compute the rank of each key.

c. Perform the partial verification test described above.

5. End timing.

6. Perform full verification test described above.

(2.9)

(2.10)

Specifications

The specifications given in table 2.7 shall be used in the benchmark. Two sets of values are given,

one for Class A and one for Class B.

Table 2.7. Parameter values to be used for benchmark

Parameter Class A Class B

N 22:_ 2 xa

Bmaz 219 221

seed 314159265 314159265

Imax 10 10

For partial verification, the reference values given in table 2.6 are to be used. In this table, r(j)

refers to the rank of Kj and i is the iteration of Step 4 of the Procedure. Again two sets of values are

given, the Full Scale set being for the actual benchmark and the Sample Code set being for development

purposes. It should be emphasized that the benchmark measures the performance based on use of the

Full Scale values, and the Sample Code values are given only as a convenience to the implementor.

Also to be supplied to the implementor is Fortran 77 source code for the sequential implementation of

the benchmark using the Sample Code values and with partial and full verification tests.

25

2.3 A Pseudorandom Number Generator for the Parallel NAS Kernels
D. Bailey

Suppose that n uniform pseudorandom numbers are to be generated. Set a = 513 and let x0 = 8

be a specified initial "seed," i.e., an integer in the range 0 < s < 246. Generate the integers x k for

1 _< k <_ n using the linear congruential recursion

Xk+ 1-ax k (rood246)

and return r k = 2-46Xk as the results. Thus 0 < rk < 1, and the r k are very nearly uniformly

distributed on the unit interval. See reference 2, beginning on page 9 for further discussion of this type

of pseudorandom number generator.

Note that any particular value Zk of the sequence can be. computed dire_tl6y from the initial.se_d, s. by
using the binary algorithm for exponentiation, taking remainders modulo 24 after each multtpllcatton.

To be specific, let m be the smallest integer such that 2 m > k, set b = s and t = a. Then repeat the

following for i from 1 to m:

j ,- k/2

b_ bt

t _-t 2

(mod 246)

(rood 246)

if 2j¢k

The final value of b is xk = aks (mod 246). See reference 2 for further discussion of the binary

algorithm for exponentiation.

The operation of multiplying two large integers modulo 246 can be implemented using 64 bit

floating point arithmetic by splitting the arguments into two words with 23 bits each. To be specific,

suppose one wishes to compute c = ab (mod 246). Then perform the following steps, where int

denotes the greatest integer:

al *-- int (2-23a)

a2 '--- a -- 223al

bl '-- int (2-23b)

b2 ,--- b- 223bl

tl _" alb2 + a2bl

t2 *-- int (2-23tl)

t 3 ,- t I -- 223t2

t4 _ 223t3 + a262

t5 ,-- int (2-46t4)

c *-- t4 -- 246t5

26

An implementation of the complete pseudorandom number generator algorithm using this scheme

produces the same sequence of results on any system that satisfies the following requirements:

• The input multiplier a and the initial seed s, as well as the constants 2 23, 2 -23, 2 46 and 2 -46,

can be represented exactly as 64 bit floating point constants.

• The truncation of a nonnegative 64 bit floating point value less than 2 24 is exact.

• The addition, subtraction and multiplication of 64 bit floating point values, where the arguments

and results are nonnegative whole numbers less than 2 47, produce exact results.

• The multiplication of a 64 bit floating point value, which is a nonnegative whole number less

than 2 47, by the 64 bit floating point value 2 -m, 0 _< rrt < 46, produces an exact result.

These requirements are met by virtually all scientific computers in use today. Any system based on the

IEEE-754 floating point arithmetic standard 1 easily meets these requirements using double precision.

However, it should be noted that obtaining an exact power of two constant on some systems requires a

loop rather than merely an assignment statement with **.

Other Features

• The period of this pseudorandom number generator is 2 44 = 1.76 x 1013, and it passes all

reasonable statistical tests.

• This calculation can be vectorized on vector computers by generating results in batches of size

equal to the hardware vector length.

• By using the scheme described above for computing x k directly, the starting seed of a partic-

ular segment of the sequence can be quickly and independently determined. Thus numerous separate

segments can be generated on separate processors of a multiprocessor system.

• Once the IEEE-754 floating point arithmetic standard gains universal acceptance among scien-

tific computers, the radix 246 can be safely increased to 252 , although the scheme described above for

multiplying two such numbers must be correspondingly changed. This will increase the period of the

pseudorandom sequence by a factor of 64 to approximately 1.13 x 1015.

27

REFERENCES

1. IEEE Standard for Binary Floating Point Numbers, ANSI/IEEE Standard 754-1985. IEEE, New

York, 1985.

2. Knuth, D. E.: The Art of Computer Programming, Vol. 2. Addison-Wesley, 1981.

3. Duff, I. S.; Erisman, A. M.; and Reid, J. IC: Direct Methods for Sparse Matrices. Clarendon Press,

Oxford, 1986.

4. Agarwal, R. C.; and Cooley, J. W.: Fourier Transform and Convolution Subroutines for the IBM

3090 Vector Facility. IBM Journal of Research and Development, vol. 30, 1986, pp. 145-162.

5. Bailey, D. H.: A High-Performance FFT Algorithm for Vector Supercomputers. International Journal

of Supercomputer Applications, vol. 2, 1988, pp. 82-87.

6. Pease, M. C.: An Adaptation of the Fast Fourier Transform for Parallel Processing. Journal of the

ACM, 1968, pp. 252-264.

7. Swarztrauber, P. N.: FFT Algorithms for Vector Computers. Parallel Computing, vol. 1, 1984,

pp. 45-63.

8. Swarztrauber, P. N. Multiprocessor FFTs. Parallel Computing, vol. 5, 1987, pp. 197-210.

28

3 A METHODOLOGY FOR BENCHMARKING SOME CFD KERNELS ON

HIGHLY PARALLEL PROCESSORS

Sisira Weeratunga,* Eric Barszcz, Rod Fatoohi,* and V. Venkatakrishnan*

Summary

A collection of iterative PDE solvers embedded in a pseudo application program is proposed for the

performance evaluation of CFD codes on highly parallel processors. The pseudo application program

is stripped of complexities associated with real CFD application programs, thereby enabling a simpler

description of the algorithms. However, it is capable of reproducing the essential computation and
data motion characteristics of large scale, state of the art CFD codes. In this chapter, we present a
detailed description of the pseudo application program concept. Preceding chapters address our basic

approach towards the performance evaluation of parallel supercomputers targeted for use in numerical

aerodynamic simulation.

3.1 Introduction

Computational Fluid Dynamics (CFD) is one of the fields in the area of scientific computing that

has driven the development of modem vector supercomputers. Availability of these high performance

computers has led to impressive advances in the state of the art of CFD, both in terms of the physical
complexity of the simulated problems and the development of computational algorithms capable of

extracting high levels of sustained performance. However, to carry out the computational simulations
essential for future aerospace research, CFD must be able and ready to exploit potential performance

and cost/performance gains possible through the use of highly parallel processing technologies. Use of

parallel supercomputers appears to be one of the most promising avenues for realizing large complex

physical simulations within realistic time and cost constraints. Although many of the current CFD
application programs are amenable to a high degree of parallel computation, performance data on such
codes for the current generation of parallel computers often has been less than remarkable. This is

especially true for the class of CFD algorithms involving global data dependencies, commonly referred
to as the implicit methods. Often the bottleneck is data motion, due to high latencies and inadequate

bandwidth.

It is a common practice among computer hardware designers to use the dense linear equation

solution subroutine in the LINPACK to represent the scientific computing workload. Unfortunately,

the computational structures in most CFD algorithms bear little resemblance to this UNPACK routine,

both in terms of its parallelization strategy as well as floating point and memory reference features.

Most CFD application codes are characterized by their use of either regular or irregular sparse data

structures and associated algorithms. One of the reasons for this situation is the near absence of com-

munication between computer scientists engaged in the design of high performance parallel computers

and the computational scientists involved in the development of CFD applications. To be effective,

such exchange of information should occur during the early stages of the design process. It appears

that one of the contributing factors to this lack of communication is the complexity and confidentiality

*ComputerSciences Corp., Ames ResearchCenter.

29

associated with the state-of-the-art CFD application codes. One way to help the design process is to

provide the computer scientists with synthetic CFD application programs, which lack the complexity of

a real application, but at the same time retain all the essential computational structures. Such synthetic

application codes can be accompanied by detailed and simpler descriptions of the algorithms involved.

In return, the performance data on such synthetic application codes can be used to evaluate different

parallel supercomputer systems at the procurement stage by the CFD community.

Computational fluid dynamics involves the numerical solution of a system of nonlinear partial

differential equations in two or three spatial dimensions, with or without time dependence. The gov-

erning partial differential equations, referred to as the Navier-Stokes equations, represent the laws of

conservation of mass, momentum and energy applied to a fluid medium in motion. These equations,

when supplemented by appropriate boundary and initial conditions, describe a particular physical prob-

lem. To obtain a system of equations amenable to solution on a computer requires the discretization of

the differential equations through the use of finite difference, finite volume, finite element or spectral

methods. The inherent nonlinearities of the governing equations necessitate the use of iterative solution

techniques. Over the past years, a variety of efficient numerical algorithms have been developed, all

requiring many floating point operations and large amounts of computer memory to achieve a solution

with the desired level of accuracy.

In current CFD applications, there are two types of computational meshes used for the spatial

discretization process: structured and unstructured. Structured meshes are characterized by a consistent,

logical ordering of mesh points, whose connectivity is associated with a rectilinear coordinate system.

Computationally, structured meshes give rise to regularly strided memory reference characteristics. In

contrast, unstructured meshes offer greater freedom in terms of mesh point distribution, but require the

generation and storage of random connectivity information. ComputationaUy, this results in indirect

memory addressing with random strides, with its attendant increase in memory bandwidth requirements.

The synthetic application codes currently under consideration are restricted to the case of structured
meshes.

The numerical solution algorithms used in CFD codes can be broadly categorized as either explicit

or implicit, based on the procedure used for the time domain integration. Among the advantages of

the explicit schemes are the high degree of easily exploitable parallelism and the localized spatial

data dependencies. These properties have resulted in highly efficient implementations of explicit CFD

algorithms on a variety of current generation highly parallel processors. However, the explicit schemes

suffer from stringent numerical stability bounds and as a result are not optimal for problems that

require fine mesh spacing for numerical resolution. In contrast, implicit schemes have less stringent

stability bounds and are suitable for problems involving highly stretched meshes. However, their

parallel implementation is more difficult and involve local as well as global spatial data dependencies.

In addition, some of the implicit algorithms possess limited degrees of exploitable parallelism. At

present, we restrict our synthetic applications to three different representative implicit schemes found in

a wide spectrum of production CFD codes in use at NASA Ames Research center.

In the remaining sections of this chapter, we describe the development of a collection of synthetic

application programs. First we discuss the rationale behind this approach followed by a complete

description of three such synthetic applications. We also outline the problem setup along with the

associated verification tests, when they are used to benchmark highly parallel systems.

30

3.2 Rationale

In the past, vector supercomputer performance was evaluated through the use of suites of kernels

chosen to characterize generic computational structures present at a site's workload. For example,

NAS Kernels (ref. 1) were selected to characterize the computational workloads inherent in a majority

of algorithms used by the CFD community at Ames Research Center. However, for highly parallel

computer systems, this approach is inadequate for the reasons outlined below.

The first stage of the pseudo application development process was the analysis of a variety of

implicit CFD codes and the identification of a set of generic computational structures that represented a

range of computational tasks embedded in them. As a result, the following computational kernels were
selected:

1. Solution of multiple, independent systems of nondiagonally-dominant, block tridiagonal equa-

tions with a (5 × 5) block size.

2. Solution of multiple, independent systems of nondiagonally-dominant, scalar pentadiagonal
equations.

3. Regular-sparse, block (5 × 5) matrix-vector multiplication.

4. Regular-sparse, block (5 × 5) lower and upper triangular system solution.

These kernels constitute a majority of the computationally-intensive, main building blocks of the

CFD programs designed for the numerical solution of three-dimensional (3D), Euler/Navier-Stokes

equations using finite-volume/finite-difference discretization on structured grids. Kernels (1) and (2) are

representative of the computations associated with the implicit operator in versions of the ARC3D code

(ref. 2). These kernels involve global data dependencies. Although they are similar in many respects,

there is a fundamental difference with regard to the communication-to-computation ratio. Kernel (3)

typifies the computation of the explicit part of almost all CFD algorithms for structured grids. Here

all data dependencies are local, with either nearest neighbor or at most next-to-nearest neighbor type

dependencies. Kernel (4) represents the computations associated with the implicit operator of a newer

class of implicit CFD algorithms, typified by the code INS3D-LU (ref. 3). This kernel may contain

only a limited degree of parallelism, relative to the other kernels.

In terms of their parallel implementation, these kernels represent varying characteristics with regard

to the following aspects, which are often related:

1. Available degree of parallelism.

2. Level of parallelism and granularity.

3. Data space partitioning strategies.

4. Global vs. local data dependencies.

5. Inter-processor and in-processor data motion requirements.

6. Ratio of communication to computation.

31

Previousresearch efforts in adapting algorithms in a variety of flow solvers to the current gen-

eration of highly parallel processors have indicated that the overall performance of many CFD codes

is critically dependent on the latency and bandwidth of both the in-processor and inter-processor data

motion. Therefore, it is important for the integrity of the benclunarking process to faithfully reproduce

a majority of the data motions encountered during the execution of applications in which these kernels

are embedded. Also, the nature and amount of data motion is dependent on the kernel algorithms along

with the associated data structures and the interaction of these kernels among themselves as well as with

the remainder of the application that is outside their scope.

To obtain realistic performance data, specification of both the incoming and outgoing data structures

of the kernels should mimic those occuring in an application program. The incoming data structure is

dependent on the section of the code where the data is generated, not on the kernel. The optimum data

structure for the kernel may turn out to be suboptimal for the code segments where the data is generated

and vice versa. Similar considerations also apply to the outgoing data structure. Allowing the freedom

to choose optimal incoming and outgoing data structures for the kernel as a basis for evaluating its

performance is liable to produce results that are not applicable to a complete application code. The

overall performance should reflect the cost of data motion that occur between kernels.

In order to reproduce most of the data motions encountered in the execution of these kernels in a

typical CFD application, we propose embedding them in a pseudo application code. It is designed for

the numerical solution of a synthetic system of nonlinear Partial Differential Equations (PDEs), using

iterative techniques similar to those found in CFD applications of interest to NASA Ames Research

Center. However, it contains none of the pre- and post-processing required by the full CFD applications,

or the interactions of the processors and the I/O subsystem. This can be regarded as a stripped-down

version of a CFD application. It retains the basic kernels that are the principal building blocks of

the application and admits a majority of the interactions required between these basic routines. Also,

the stripped-down version does not represent a fully configured CFD application in terms of system

memory requirements. This fact has the potential for creating data partitioning strategies during the

parallel implementation of the synthetic problem that may be inappropriate for the full application.

From the point of view of functionality, the stripped.down version does not contain the algorithms

used to apply boundary conditions as in a real application. It is well known that often the boundary

algorithms gives rise to load imbalances and idling of processors in highly parallel systems. Due to the

simplification of the boundary algorithms, it is likely that the overall system performance and efficiency

data obtained using the stripped-down version may be higher than that of an actual application. This

effect is somewhat mitigated by the fact that for most realistic problems, a relatively small time amount

of is spent dealing with boundary algorithms when compared to the time spent in dealing with the

internal mesh points. Also, most boundary algorithms involve only local data dependencies.

Some of the other advantages of the stripped-down application vs. full application approach are:

1. Allows benchmarking where real application codes are confidential.

2. Easier to manipulate and port from one system to another.

3. Since only the abstract algorithm is specified, facilitates new implementations that are tied

closely to the architecture under consideration.

32

4. Allows easy addition of other existing and emerging CFD algorithms to the benchmarking

process.

5. Easily scalable to larger problem sizes.

It should be noted that this synthetic problem differs from a real CFD problem in the following

important aspects:

1. In full CFD application codes, a non-orthogonal coordinate transformation (ref. 2) is used to

map the complex physical domains to the regular computational domains, thereby introducing metric

coefficients of the transformation into the governing PDE's and boundary conditions. Such transforma-

tions are absent in the synthetic problem, and as a result may have reduced arithmetic complexity and

storage requirements.

2. A blend of nonlinear, second- and fourth-difference artificial dissipation terms (ref. 4) is used

in most of the actual CFD codes, whose coefficients are determined based on the local changes in

pressure. In the stripped-down version, only a linear, fourth difference term is used. This reduces the

arithmetic and communication complexity needed to compute the added higher-order dissipation terms.

However, it should be noted that computation of these artificial dissipation terms involve only local data

dependencies, similar to the matrix-vector multiplication kernel.

3. In codes where artificial dissipation is not used, upwind differencing based on either flux-vector

splitting (refs. 5 and 6), flux-difference splitting (ref. 7) or Total Variation Diminishing (TVD) schemes

(ref. 8) is used. The absence of such differencing schemes in the stripped-down version induces effects

similar to (2) on the performance data.

4. Absence of turbulence models. Computation of terms representing some turbulence models

involve a combination of local and some long-range data dependencies. Arithmetic and communication

complexity associated with turbulence models are absent.

In addition, it needs to be emphasized that the stripped-down problem is neither designed nor is

suitable for the purposes of evaluating the convergence rates and/or the applicability of various iterative

linear system solvers used in computational fluid dynamics applications. As mentioned before, the

synthetic problem differs from the real CFI) applications in the following important ways:

.

2.

3.

4.

mations

5.

iterative

Absence of realistic boundary algorithms.

Higher than normal dissipative effects.

Lack of upwind differencing effects, based on either flux-vector splitting or TVD schemes.

Absence of geometric stiffness introduced through boundary conforming coordinate transfor-

and highly stretched meshes.

Lack of evolution of weak (i.e., C '0-) solutions found in real CFD applications, during the

process.

6. Absence of turbulence modelling effects.

33

Someof theseeffectstendto suppressthe predominantly hyperbolic nature exhibited by the Navier-

Stokes equations, when applied to compressible flows at high Reynolds numbers.

3.3 Mathematical Problem Definition

We consider the numerical solution of the following synthetic system of five nonlinear partial

differential equations (PDEs):

0U
m --- m

Or

with the boundary conditions:

OE(U) + OF(U____)+ OG(U)

OT(U,U_) Ov(u,u_)+ + +
o_ o,7

+ H(U, U_,U., U¢),

e(u, u_,u., u() = ueCr,_,,7,¢),

owcu, u¢)
o¢

(r,{,_,¢) _ D_ x D

(r,_,rl,¢) E Z_rx OZ_

(3.1a)

(3.1b)

and initial conditions:

U=U0(_,_7,(), (_,_7,()ED for r=O

where D E _b3 is a bounded domain, OD is its boundary and Dr = {0 _< r _< T}.

(3.1c)

Also, the solution to the system of PDEs:

fu(z)

u(2)

U= u(3) (3.2)

u(4)

defined in (D U OD) x Dr, is a vector function of temporal variable r and spatial variables (_, _7,_)

that form the orthogonal coordinate system in _,3, i.e.;

u(m) = ,L(m)(r, _,,7,¢)

34

The vector functions U B and IJ 0 are given and B is the boundary operator. E, F, G, T, V, W and

H are vector functions with five components each of the form:

e(2)

E= e (3) (3.3)

e (4)

e(5)

and e (m) = e(m)(U) etc., are prescribed functions.

The system given by equation (3.1a) is in the 'normal-form', i.e., it gives explicitly the time

derivatives of all the dependent variables u(1),u(2),..., u (5). Consequently, the Cauchy data at r = 0,

given by equation (3.1c) permits the calculation of solution U(r, _, r/, _) for r > 0.

In the current implementation of the synthetic PDE system solver, we seek a steady-state solution

of equation (3.1) of the form:

(f(1) _

f(2)

U* = f(_,rl,¢) = 1(3) (3.4)

f(4)

where f(m) = f(m) (_, _7,_) are prescribed functions of the following form:

f(1)(_,_, ¢) _

f(2) (_, _], _)

f(3) (_, _7,_)

f(4) (_, _7,_)

¢)

Here, the vector e is given by

eT=(1 _ 77 ¢

CI,1 C1,2 ... 61,13)

-- C2,1 C2,2 C2,13 e(_, 77, _)

C5,1 65,2 C5,13

_2 r12 _2 _3 73 _3 _4 _74 _4)

(3.5)

35

and Cm,n, m = 1, 2,..., 5 , n = 1, 2,..., 13 are specified constants. The vector forcing function

H = [h (1), h (2), h (3), h (4), h(5)] T, where h (m) = h(m) (_, r/, () is chosen such that the system of PDE's,

along with the boundary and initial conditions for H, satisfies the prescribed exact solution, U*. This

implies

_rOE(__U*)OF(U*) 0G(U*)
H*(_'_7'()= ' O_ + "_ + 0_

0T(U*, ov(u',u)
+ + +

a_ on
for (_,rl, _) E D x Dr

(3.6)

The bounded spatial domain D is specified to be the interior of the unit cube [(0, 1) x (0, 1) x (0, 1)],
i.e.:

D= {(_,17,():0<_ < 1,0< r/< 1,0< (< 1}

and its boundary 0D, is the surface of the unit cube given by

OD= {(_,r/,(): _=Oor 1}O{(_,r/,(): r/=Oor 1}U{ (_,r/,O: _ =Oor 1}

The vector functions E, F, G, T, V and W of the synthetic problem are specified to be the following:

where

_u(2)

-[u(2)]21u O) - 4,

--[U(2)U(3)]/_z(1)

--[U(2)U(4)]/U(1)

+

G

; F=

_u(4)

-- [U(2)U(4)]/U(1)

--[U(3)U(4)]/U(1)

_[u(4)]2/u(1) _

-- [u (4)/u (1)] [u (5) "4-_]

--U(3)

--[U(2)U(3)]/U(1)

--[U(3)]2/U(1) --

--[U(3)U(4)]/U(1)

, --[U(3) lU(1)][U (5) -I- qb]

= k2{u(5) _ 0.5[([u(2)] 2 -t- [u(3)] 2 -I- [u(4)]2)]}
U(1)

36

Also

r

where

(5) 0u (5)t (5) - d.
a_

(d_)(O_(_)la_)

d_ 2) (au (2)/a_) + (4.13.)k3k4(a[u(2) lu(1)]lO_)

d_3)(0u(3)/a_) -I- ksk4(_[u(S)/u(1)]/c9_)

d_4) (0u(4)/_) + k3k4(_[u(4)/u(1)]/c9_)

t(5)

+ 0.5(1.- klk5)_--_([u(2)]2 -t" [u(3)]2 + [u(4)]2)-F (_..)_---_[u(2)/u(1)]2+ klk5_-_[u(5)/u(1)]
[U(1)] 2

V .._

d_l)ca_,(_)/_)

d_2) (o_(2)/_7) -F k3k4(o_[uC2)/u(1)]/o_)

d_3) (0u(3)/o%r/)-I- (4./3.)k3k4(O[u(3)/u(1)]/O'q)

d_4) (au(4)/o_T/) -I- ksk4(cO[u(4)/u(1)]/O'rl)

v(5)

where

Ou(5)
v (5) = d_5)

a_

-t- 0.5(1.- klk5)_-_([U(2)] 2 -t-[u(3)] 2 -I-[tt(4)] 2 (1._O.__[U(3)/u(1)] 2[u(1)] 2)'t',6.,O_TL , j "-F klk5 [u(5)/u (1)]

37

W

d_x)(Oda)18¢)

d_2) (o%u(2)lO_) -}-k3k4(O[u(2) lu(1)]lO_)

d_3)(Sd3)186)+ k3k4(S[d3)Idl)]18¢)

d_4)(0u (4)/o¢) + (4.13.)kSk4(O[u(4)I_ (1)]/o¢)

w(5)

where

6_u(5)
w (5) = d(.5)

t,

u_0 [u(2)] 2 -}-[U(3)]2[u(1)]2 + [U(4)] 2) (1._O_[u(4)lu(1)]2 _._
-{-0.5(1. -- klk5)-_'_("{- -}-klk5 [U(5)lu(1)]

"6.'8¢'

and kl,k2, k3, k4, ks, d_m), d_m), d_m) (m- 1,2,...,5)are given constants.

3.3.1 The boundary conditions

The boundary conditions for the system of PDEs is prescribed to be of the uncoupled Dirichlet

type, and is specified to be compatible with U*, such that

andre= 1,2,...,5.

u(m) -- f(m)(_,zl,_)

3.3.2 The initial conditions

for (r,_,v/,() E Dr x OD (3.7)

The initial values U 0 in D are set to those obtained by a transfinite, trilinear interpolation (ref. 9)

of the boundary data given by equation (3.7). Let

Then

p_m) _ (1.- _) uCm)(o,_,¢) + _ uCm)(1,_, _)

p(_) = (1.- ,7)u(_)(_, o, ¢) + ,7u(m)(_, 1,¢)

p_m) _ (1. - (_) u(m)(_,zl, O) + (_ u(m)(_,r/, 1).

(3.8)

+.,_D(m)D(m)D(m),r}-¢ , for (_, r/, ¢) E D

(3.{])

38

3.4 The Numerical Scheme

Starting from the initial values prescribed by equation (3.9), we seek some discrete approximation

U_ E D to the steady-state solution U* of equation (3.1), through the numerical solution of the nonlinear

system of PDE's using a pseudo-time marching scheme and a spatial discretization procedure based on

finite difference approximations.

3.4.1 Implicit time differencing

The independent temporal variable r is discretized to produce the set

Dr = {r. :n 6 [0,N]}

where the discrete time increment Ar is given by

"rn = rn- 1 + Ar = nat (4.1)

Also the discrete approximation of U on Dr is denoted by

U(r) = t (nhr) = U (4.2)

A generalized single-step temporal differencing scheme for advancing the solution of equation (3.1)
is given by reference 10

/_hr OAU n hr OU n 0 o)hUn_ 1 1 _ O)Ar 2 + hr3] (4.3)hUn= (1+8) 0r ÷(1+0) Or +(1+ +O[(8--

where the forward difference operator A is defined as

AUn = Un+l _ U_ (4.4)

With the appropriate choice for the parameters/_ and 0, equation (4.3) reproduces many of the

well known two- and three-level explicit and implicit schemes. In this particular case, we are interested

only in the two-level, first-order accurate, Euler implicit scheme given by/_ = 1 and 0 = 0, i.e.:

A Oh Un hrOt rn
hun = art + Or + O[hr2] (4.5)

Substituting for (cghUnlOr) and (OU/Or) in equation (4.5), using equation (3.1a), we get

hr[O(hEn + AT n) O(AF n + AVn) O(AGn + hwn)]AUn
O_ + On + O(

+ T) n 0(F + V) n 0(G + W) n
+ hr[O(Eo_ + Or/ + 0(] + ArH*

(4.6)

where AEn = E n+l - E n and E n+l = E(U n+l) etc.

39

Equation (4.6) is nonlinear in AU n as a consequence of the fact that the increments AE n, AI m,

AG n, AT n, AV n and AW n are nonlinear functions of the dependent variables U and its derivatives

U_, U_ and U¢. A linear equation with the same temporal accuracy as equation (4.6) can be obtained

by a linearization procedure using a local Taylor series expansion in time about U n (refs. 11 and 12);

0E n
E "+I = E n + (_7) Ar + O(Ar 2)

OE n OU n
= E"+ (g_) (_) Ar + O(A_-2)

(4.7)

Also
OU ,

u"+1= u" + (-_) _r + O(Ar2) (4.8)

Then, by combining equations (4.7) and (4.8), we get

0E n +1
E "+l=En+(b-_) (U" -U _)+O(Ar 2) (4.9)

or

AEn = An(U)AU _ + O(Ar 2) (4.1o)

where A(U) is the lacobian matrix (OE/0U).

It should be noted that the above non-iterative time-linearization formulation does not lower the

formal order of accuracy of temporal discretization in equation (4.6). However, if the steady-state

solution is the only objective, the quadratic convergence of the Newton-Raphson method (for sufficiently

good initial approximations) is recovered only as Ar --, oo.

Similarly, the linearization of remaining terms gives

OF n
At" = (g6) AU-" + O(Ar 2)

= BnAu n + O(A¢ 2)

(4.11a)

AG n = (_--_) AU" + O(Ar 2)

= CnAU n +O(Ar 2)

(4.11b)

cgT n 0T n

aT" = (_) _U" + (0-_) _ + O(a_ 2)

= M"_U" + N_ + O(_r 2)
O(NAU)"

= (M - N_)nAUn + O_ + O(Ar2)

(4.11c)

4O

OV n 0V n

v - = () au _ + (g07) a_ + oca__)
O(QAU) n

= (P - Q_?)nAUn + 077 + O(Ar2)

(4.11d)

OW n OW ,_

z_w" = C-g6)_u" + (_U-_)_ + O(_r2)
o(s_u)"

= (R- S¢)nAU n + 0(+ O(Ar2)

(4.11e)

where
OF

B(U) = 0-U (4.:2a)

0G

C(U) = 0-U (4.12b)

0T 0T ON

M(U, U_)= 0U; N(U) = 0-U-_; N:(U, U:)= _-_ (4.12c)

P(U,u,_) = 0v ov OQ
--; Q(U) = --;0U,7 Qrj(U, Ur/) = -_- (4.12d)

OW OW 0S

R(U, U¢) = 0U; S(U) = OU¢; S¢(U, U¢) = _-_ (4.12e)

When the approximations given by equation (4.11) are introduced into equation (4.6), we obtain

the following linear equation for AUn:

Ar[0(A + M- N_) n{i
o_

02(N)"
+_+

+

0(E + T) n

0(B + P- Q_)n ÷ 02(Q)n
o7

0(C + R - S¢) n 02(S)n,_A,m

0¢ + _Js_,.-_ =
0(r + V)" O(G+ w)-

+ +
o7 o¢

+n*]

(4.13)

It should be noted that the notation of the form

[0(A + M- N_)n]AUn
o_

41

is used to represent the expressions as such

0[(A + M- N_)nAU n]
etc.

The left hand side (i.e., LHS) of equation (4.13) is referred to as the implicit part and the right

hand side (i.e., RHS) as the explicit part.

The solution at the advanced time, 7"-- (n + 1)At, is given by

U n+_ = U n + AUn (4.14)

The Jacobian matrices for the problem under consideration are given by

A

0 -1 0

[u(2)/u(1)] _ - q (k2 - 2)[u(2)/u (1)] k2[u(3)/_ (1)]

[uC2)u(3)]/[u(1)] 2 -[u(3)luO)] -[u(_)/u0)]

[u(2)u(4)]l[u(1)] 2 -- [uC4)/u (1)] 0

a51 a52 k2 [u(2)u(3)]/[u(1)] 2

o o

k2[.(4)/u (1)] -k 2

0 o

-[u(2)/u(1)] 0

k2[u(2)u(4)]/[u(1)] 2 -k l [u(2) /u(1)]

where

(k2){ [u(2)]2_2_ -I-[u(3)] 2 + [u(4)] 2q
[uO)]2

u(2).

a51 = 0)] - 2q)[- iJ

a52 = (_){ 3[u(2)]2 -t-[u(1)]2[u(3)] 2 + [u(4)] 2 } _ kl[u__]u(5)

42

S ,._

0 0 -1

[u(2)_(3)]l[u(1)] 2 -[u(3)/u(1)] -[u(2)/lg(1)]

[d3)/da)] 2 - q k2[u(2)/u0)] (k2 - 2)[dz)/d 1)]

[u(3)t_(4)]/[u(1)] 2 0 --[u(4) /u (1)]

b51 k2 [uC2)u(3)]/lu(1)] 2 b53

0

0

k2[u(4)/u(1)]

[u(s)/u(1)]

k2[u(3)u(4)]/[u(1)] 2

?
-kl[u(3)lu(1)])

where
u(3)

b51 = {kl[u(5)lu (1)] - 2q}[u-_],

b53 : (_){ [u(2)]2 + 3[u(3)]2[u(1)]2 + [u(4)]2 } -/¢1 [u-"_]u(5)

C

0 0 0 -1
!

[U(2)U(4)]/[U(1)] 2 --[U(4)/U (1)] 0 --[U(2)/U (1)]

[U(3)tt(4)]/[U(1)] 2 0 --[U(4)/U (1)] [U(3)/U (1)]

[U(4)/U(1)] 2 -- q k2[u(2)/u (1)] k2[u(3)/u(1)] (k 2 - 2)[u(4)/u(1)]

c51 k2 [u(2)u(4)]/[u(1)] 2 k2 [u(3)u(4)]/[_,(1)] 2 c54

o
0

0

-k2

-kl [u(4)lu(I)],

where
U(5) U(4)

c51 -- (kl[u-_- l - 2q}[u--_]

c54 = (_){ [u(2)]2 + [u(S)]2[U(1)]2+ 3[u(4)]2 } -- kl[u-_]u(5)

(M - N_) = [0]

43

N

-[4./3.]k3k4(u (2)/[u(1)] 2)

_k3k4(u(3) /[it(I)]2)

-k3k 4(tt(4)/[u(1)]2)

n51

0 0 0

d_2)+ 0 0

[4./3.]k3k4 (1./u (1))

0 d_3)-t - 0

k3k4(1./u(1))

0 0 d_4)+

k3k4(1./u(1))

n52 n53 n54

0

0

0

0

n55

where

n51 "- --[(4./3.)kSk4 - klk3k4k5]([u(2)]2/[u(1)] 3)

_ [k3k 4 _ klk3k4kS]([tt(3)]2/[u(1)]3)

- [k3k4 - klk3k4k5]([u(4)] 2/[u (1)]3)

_ kl k3k4k5(u(5)/[u(1)]2)

n52 --([4./3.]k3k4 - klksk4ks)(u (2)/[u(1)] 2)

n53 _(ksk4 _ kl k3 k4k5) (u(3) /[it(I)]2)

n54 -(k3k4 - kl ksk4k5)(u (4)/[u(1)]2)

n55 --d_ 5) -b (kl k3k4k5)(1./u (1))

(P- Q,7) = [0]

Q __.

d_1) 0

-k3k4(u(2)/[u(1)] 2) d_72) --i-

k3k4(1./u (1))

-(4./3.)k3k4(u(3)/[u(1)] 2) 0

-k3k 4 (u(4)/[u(1)]2) 0

q51 q52

0

0

d 3)+
(4./3.)k3k4(1./u (11)

0

q53

0

0

0

d_74)+

k3k4(1./u(1))

q54

0

0

0

0

q55

44

where
q51 = -- [k3k4 - klk3k4ks]([u(2)] 2/[u(1)]3)

- [(4./3.)k3k4 - klk3k4k5]([u(3)]2/[u(1)] 3)

- [k3k 4 - klk3k4ks]([u(4)]2/[u(1)] 3)

- klk3k4k5(u(5)/[u(1)] 2)

q52 =(ksk4 - klk3k4k5)(ix(2)/[u(1)] 2)

q53 =([4./3.]k3k4 - kl k3k4ks)(ix(3)/[u(1)]2)

q54=(ksk4- klk3k4ks)(J4)/[J1)]2)

q55 =d_ 5) + (klk3k4k5)(l'/ix(l))

(R- SO)= [0]

S _..

_k3 k4 (ix(2) /[ix(I)]2)

_k3k4 (ix(3)//[ix (1)]2)

-(4./3.)k3k 4 (lx(4)/[ix(1)]2)

0

d_2)+

k3k4(1./ix(1))

0

0

0

k3k4(1./u(1))

0 0

0

0

0

(4,/3.)k3k4(1./u (1))

0

851 852 853 854 855

where

s51 = -- [k3k4 -- klk3k4k5]([u(2)]2/[u(1)]3)

--[k3k 4 -- klk3k4k5]([u(3)]2/[ix(1)] 3)

-[(4./3.)ksk 4 - klk3k4k5]([u(4)]2/[ix(1)] 3)

-- klk3k4k5(u(5)/[u(1)] 2)

s52 =(k3k4 - klk3k4k5)(u(2)/[u(1)] 2)

s53 "-(k3k4 - klk3k4k5)(u(3)/[u(1)] 2)

s54 =([4./3.]k3k4 - kl k3k4k5)(u (4) /[u(1)] 2)

s55 =d_ 5) + (klk3k4k5)(1./u (1))

45

3.4.2 Spatial discretization

The independent spatial variables (_, ¢/, _) are discretized by covering/9, (the closure of D), with

a mesh of uniform increments (h_,/hT, he) in each of the coordinate directions. The mesh points in

the region will be identified by the index-triple (i, j, k), where the indices i 6 [1, N_], j 6 [1, Nr/] and

k 6 [1, N¢] correspond to the discretization of _, r/and _ coordinates, respectively.

Dh uODh = {(_i,rlj,_k) : 1 < i < N_,I <_ j <_ Nn, 1 <_ k < N¢}

where

= (i- 1)h ;

and the mesh widths are given by

r/j = (j- 1)h_; _k = (k- 1)he (4.15)

h_ = 1./(N_- 1); h_ = 1.1(N_- 1); he = 1./(N¢- 1) (4.16)

with (N_, N, 7, N¢) 6 N being the number of mesh points in _-, rj- and C-directions, respectively.

Then, the set of interior mesh points is given by

Oh = {(_i,_?j,_k): 2 < i < (N_ - 1),2 _< j _< (N, 7 - 1),2 < k _< (N¢ - 1)}

and the boundary mesh points by

c3Dh = {(_i,_Tj,_k): i • {1, N_}} U {(_i,r/j,¢k): j • {1, N,7}} U {(_i,r/j,_k): k • {1, N¢}}

Also, the discrete approximation of U in (D x Dr) is denoted by

uc'r,_,rh_) _ U_(nA'r,(i- 1)h_, (j - 1)h,7, (k - 1)he) = U_j,k
(4.17)

3.4.3 Spatial differencing

The spatial derivatives in equation (4.13) are approximated by the appropriate finite-difference

quotients, based on the values of U_ at mesh points in Dh U ODh. We use three-point, second-order

accurate central difference approximations in each of the three coordinate directions.

In the computation of the finite-difference approximation to the RHS, the following two general

forms of spatial derivatives are encountered, i.e.:

0e(m)(U)

and
at(m) (u, ue)

46

The first form is differenced as (using m-th component vector function E as an example)

0e(m)(IJ)

a_ lid,k = (1/2h_)[e(m)(Ui+ld, k) - e(m)(Ui-l,J, k)] + O(h_)
(4.18)

The second form is approximated as (using m-th component of vector function T as an example)

otCm)CU,u_)I_,j,k= (llh(){t(m)[(Ui+ld'k + Uid,k), (Ui+l,j,k - Ui,j,k)]
o_ 2 h_

_ t(m) [(Ui'j'k + Ui-lZ'k), (Uiz'k - Ui-l'j'k)]} -t- O(h_)
2 h_

(4.19)

for 2 < i < (N_ - 1). Similar formulas are used in the r/- and _- directions as well.

During the finite-difference approximation of the spatial derivatives in the implicit part, following

three general forms are encountered:

o[,.(m,t)(O)Au(0]

o[,,,(,,,,o(tr, o_)Au(0]
o_

and 02[n(_,0 (O)Au(t)]
0_2

The first form is approximated by the following:

O[a(m,l)(U)Au(l)]li,j, k [(1/2h_){a(m,l)(Ui+l,j,k)}]Aull)+l,j,k_[(1/2h_){a(m,l)(Ui_l,j,k) (l).._ }]AUi-l,j,k

0_ (4.20)

The second form is differenced in the following compact three-point form:

0[m(re't)(U,U_)Au(t)] [(Ui+l d,k + Ui,j,k
O_ li,j,k "_ [(1/2h(){ m(m'l))' (

Ui+l,j,k - Ui,j,k (l)
)]}]A_+l,j,k

2 h_

Ui+ l,j, k -b Ui,j,k)), (Ui+ l,j,k - Ui,j.k)]
+ [(1/2h(){nt(m,l)[(2 h(

/1Art(/)-- m(m'l)[(Ui'j'k q- Ui-l'j'k) (Ui'j'k -- Ui-l'j'k)]lJ'-"' i,j,k
2 ' h(

._ (t)
_ [(1/2h(){ra(m,l)[(Ui'j'k + Ui-l,j,k) (Ui,j,k - Ui_l,j, k)]_z.xui_l,j, k

2 ' h_

(4.21)

Finally, the third form is differenced as follows:

47

r/1/h2_[n(m,l)tu . ._11Au (1) .
Jr L_ ! _]l I. i--Ij,IcH] i-lj,k

(4.22)

3.4.4 Added higher order dissipation

When central difference type schemes are applied to the solution of the Euler and Navier-Stokes

equations, a numerical dissipation model is included, and it plays an important role in determining

their success. The form of the dissipation model is quite often a blending of second-difference and

fourth-difference dissipation terms (ref. 4). The second-difference dissipation is nonlinear and is used to

prevent oscillations in the neighborhood of discontinous (i.e., C O) solutions, and is negligible where the

solution is smooth. The fourth-difference dissipation term is basically linear and is included to suppress

high-frequency modes and allow the numerical scheme to converge to a steady state. Near solution

discontinuities, it is reduced to zero. It is this term that affects the linear stability of the numerical

scheme.

In the current implementation of the synthetic problem, a linear fourth- difference dissipation term

of the following form:

_ A.r e [h_O4U n -4 04Un h4O4Unl+

is added tO the right hand side of equation (3.1a). Here, e is a specified constant. A similar term with

U n replaced by AU n will appear in the implicit operator, if it is desirable to treat the dissipation term

implicitly as well.

In the interior of the computational domain, the fourth-difference term is computed using the

following five-point approximation:

h 4 04Un (4.24a)

for4<i< (N_-3).

At the first two interior mesh points belonging to either end of the computational domain, the

standard five-point-difference stencil used for the fourth-difference dissipation term is replaced by one-

sided or one-sided biased stencils. These modifications are implemented so as to maintain a non-positive

definite dissipation matrix for the system of difference equations (ref. 16).

Then, at i = 2:

04un n

h_'_ li,j,k '_" Ui+2,j,k - 4U_/+l,j,k "+"5U_i,j,k (4.24b)

48

andat i = 3:

h4 04II n (4.24c)

Also at i = N_ - 2:

h4O4U n .
_"_li,j,k '_ -4UTi+ld,k + 6U_ij,k - 4U_i-ld,k + U_i-2d,k

(4.24d)

and at i = N_ - 1:

4_u _
h_-_ id,k "_ 5U_ij,k - 4U_/-1j,k + U_i-2J,k

(4.24e)

Similar difference formulas are also used in the _7- and _- directions.

Also, for vector functions T, V and W used here:

(M - N_) = 0, (P- Q,7) = 0, (R - S_) = 0

Then, for the cases where added higher order dissipation terms are treated only explicitly, equation (4.13)

reduces to

r0(A) n 02(N) n O(B) n O2(Q) n O(C) n oq2_(S)n
{l__v L* -_ +-"_--'+ _ +--'_-_+ _ + 0(-z¢,]} AUn=

0(E + T) n O(F + V) n + O(G + W) n
/v,-[-b7 + o,7 a¢]

,.4 04un 1

_ ,,,_._[h__tr,,_+h,I _v"o,74 + '_--b-_'
+ ArH*

(4.25a)

When the implicit treatment is extended to the added higher order dissipation terms as well,

equation (4.13) takes the following form:

{I - &r[
0(A) n

O(B) n
+_

O_

a(c) _
+_

a(

O2(N) n ,404(I)

+ -ag- - _"_--_
02(Q) n ,4 o'_(I)

o2(s)" _h___l}AUn =+_-

Ar[O(E + T)n O(F+ V)n + a(G + W)n

A r 'h 4 04 Un - 4 O4 Un 4 04 Un "
- _t _--aT+h_ _ +h_j
+ ArH*

(4.25b)

49

The modifiedvector forcing function is given by:

0F(U*) 0G(U*)_r0E(U*) + +
H*(_'_7'_')- L 0_ _ 0_

oT(u*,u_) ov(v*,v;)
÷ + 4-

_ 404u * _404u * _4_u*,

ow(u*,u_)]
0¢

for (_,_7, C) _ D x Dr

(4.26)

3.4.5 Computation of the explicit part--RHS

The discretized form of the explicit part of equation (4.25) is given by:

[RHS]nIij,k _ Ar[Df(E + T) n + Drt(F + V) n + D¢(G + W)n]lij,k

- L_r _ [h_D'_U n + _D4_I_ + h_D_Un]lij,k (4.27)

÷ Ar[H*]lij,a

where D_, D r and D_ are second-order accurate, central spatial differencing operators, defined in D h.

At each point in the mesh, [RHS]_j, k is a column vector with 5 components. Discretization of added

higher order dissipation terms was already discussed in section 4.4. Here we consider the computation

of the first term in equation (4.27), using formulas given in equations (4.18) and (4.19):

[D_(E + T) n + Drt(F + V) n + D_(G + W)n]lij,k -- (1/2h_)[E(U_i+lj,k) - E(U_i-l,j,k)]

+ (1/h_){T[(U_i+l'J'k; U_i,J,k), (Lr_i+l'j'k - U_i,.i,k)]
h_

T[(L_Lj'k + U_LJ'k - U_i-ld'k)1}- 7-1'_'k), (h_

+ (1/2h,)[F(U_ij+l,k) - F(U_id_l,k)]

U n

+ (1/h,){v[(U_i,j+l,k2÷ U_/,j,k), (i,j+l,k -- U_i,j,k)] (4.28)
hn

(_j,k - _j- 1,k)]}- v[(_J'k +2t_,j-l,k), h,

+ (1/2h¢)[G(Ur_ij,k+l) - G(U_Lj,k_I)]

+ (1/h_){w[(_j'k+_ + _,_), (_,_+_ - _,_)]
2 h_

w[(,_ + _,,k__), (_,,_ - _,_-1)]}
2 he

for {(i,j,k) e Oh}. Also, [RHS]_,j,k-Ofori- 1 or No j= 1 or N, and k- 1 or g_.

This right hand side computation is equivalent in terms of both arithmetic and communication

complexity to a regular sparse block (5 × 5) matrix-vector multiplication, which is the kernel (c).

However, its efficient implementation, in this case, does not necessarily require the explicit formation

and/or storage of the regular sparse matrix.

50

3.4.6 Computation of the forcing vector function

Given the analytical form of U*, the forcing vector function H* can simply be evaluated analytically

as a function of 4, _7, and _, using equation (4.26). This function, along with equation (4.15), can then

be used to evaluate [H*]ij,k, which is also a colunm vector with 5 components.

Here, we opt for a numerical evaluation of [H*]ij,k, using [U*]ij,k and the finite-difference ap-

proximations of equations (4.18) and (4.19), as in the case of equation (4.28).

[H*]lij,k _ (1/2h_) [E(Ui*+lJ,k) -- E(U_-Ij,k)]

(1/h_){r[(U*+lJ'k + I'_id'k), (Ui*+ld'k - U[j'k)]
+ 2 h_

T[(U_j,k + Ui*_.lj,k), (U_j,k - U.* •- 2 h_,-1,,,k)]}

+ (1/2h,7)[F(U;j+l,k) - F(Ui*j_I,k)]

u* + ui*,_,ku;,_+x,k- u;,,,k)]
+ (1/h'7){V[(z°+l'k2)' (h'7 (4.29)

v[(U[_,k * * u;,j__,k)]}+ U_d__,k), (U_z'k -
- 2 h,

+ (1/2h¢)[G(U;d,k+l) - G(Ui*d,k_ 1)]

U.*. + Ui*,j,k), (Ui*j,k+ 1 - U_,j,k)]
+ (1/h¢){W[("J'k+l 2 he

_ w[(U[_,k+ u[j,k_l),(u[j,k - u;,j,k_l)]},
2 he

h4D411 * hcDcU][i,j,k+ E[h_D_U* +",7-,7- + 44*

for {(i, j, k) 6 Dh}. The fourth difference dissipation terms are evaluated using equation (4.24). Also,

[H]id, k = 0 for i = 1 or N_, j = 1 or N o and k = 1 or N¢.

3.4.7 Solution of the system of linear equations

Replacing the spatial derivatives appearing in equation (4.25) by their equivalent difference ap-

proximations results in a system of linear equations for [AUn]i,j,k for i 6 [2,N_ - 1], j 6 [2,N, 7 - 1]

and k 6 [2, N¢ - 1]. Direct solution of this system of linear equations requires a formidable matrix
inversion effort, in terms of both the processing time and storage requirements. Therefore, AU n is ob-

tained through the use of an iterative method. Here we consider three such iterative methods, involving

the kernels (a), (b) and (d). All methods involve some form of approximation to the implicit operator

or the LHS of equation (4.25). For pseudo-time marching schemes, it is generally sufficient to perform

only one iteration per time step.

51

3.4.7.1

operator in equation (4.25a) is approximately factored in the following manner (refs. 1 and 9):

" '°q(A)n °_(N)n]} x {/-A'r[-_+ c_(Q)n'' _]) AUn{l-_r t _ +_ _j_x{I-Ar[_O n+

Approximate factorization (Beam-Warming) algorithm- In this method, the implicit

The Beam-Warming algorithm isto be implemented as shown below:

Initialization

Set the boundary values of Uid,k for (i,j,k) E OD h in accordance with equation (3.7).

Set the initialvalues of l_id,k for (i,j,k) E Dh in accordance with equation (3.8).

Compute the forcingfunctionvector,H_d,k for (i,j,k) E Dh, using equation (4.29).

Step 1: Explicitpart

Compute the [RHS]nj,k for (i, j, k) E Dh.

Step 2: ,_-Sweep of the implicit part

Form and solve the following system of linear equations for [AU1]i,j,k for (i,j, k) E Dh:

{I- Ar[D¢(A) n + D_(N)n]}AUI = RHS

Step 3: p-Sweep of the implicitpart

Form and solve the following system of linearequationsfor [AU2]i,j,kfor (i,j,k) E Dh:

{I- Ar[D_(B) n + D_(Q)n]}AU2 - AU1

= RI-IS

(4.30)

Step 4: C-Sweep of the implicit part

Form and solve the following system of linear equations for [AUn]ij,k for (i,j, k) E Dh:

{I- At[De(C) n + D_(S)nl}AU n = AU2

Step 5: Update the solution

n+l
[U]i,j,k = [U_]i,j,k + [AU_]i,j,a, for (i,j,k) _ Dh

Steps 1-5 consist of one time-stepping iteration of the Approximate Factorization scheme. The

solution of systems of linear equations in each of the steps 2--4 is equivalent to the solution of multiple,

52

independent systems of block tridiagonalequations,with each block being a (5 x 5) matrix,in the three

coordinatedirections_,r/,(respectively.For example, the system of equationsin the _-sweep has the

followingblock tridiagonalstructure:

[BI,j,kl[AUlll,j,k q- [Clj,kl[AU1]2j,k "- [RHSll,j,k

+ [B j,kl[Athl z,k+ [C z,kl[Athli+l, ,k= [RnShj,k 2 < i < N(- 1
[AN_j,k][AIJIIN__Ij,k + [BN_j,kl[AUIINej,k = [RttSIN_,j,k

(4.31)

where (j E [2,N,7- 1])and (k E [2,N¢ - 1]).Also, [.A],[B]and [C]are (5 x 5) matrices and [AUI]ij,k

isa (5 x 1) column vector.

Here, for 2 < i < (N(- 1), using equations (4.20) and (4.22):

[.Aid,k] = --A-r{ (- 1/2hg) [A(U_/_Ij,k)] + (1/h_)[N(U_/_ld,k)]}

[B ,kl= I + (4.32)
[Cij,kl = --At{ (1/2h()[A(r_i+l,j,k)] + (1/h_)IN(r_i+ld,k)]}

Also, [Bl,j,k] = [11, [C1j,k] = [0], [,Ay_,j,k] = [0], and [BN_j,k] = [I1.

3.4.7.2 Diagonal form of the approximate factorization algorithm- Here the approximate fac-

torization algorithm of section 4.7.1 is modified so as to transform the coupled systems given by the left

hand side of equation (4.25b) into an uncoupled diagonal form. This involves further approximations in

the treatment of the implicit operator. This diagonalization process targets only the matrices A, B, and

C in the implicit operator. Effects of other matrices present in the implicit operator are either ignored

or approximated to conform to the resulting diagonal structure.

The diagonalization process is based on the observation that matrices A, B, and C each have a set

of real eigenvalues and a complete set of eigenvectors. Therefore, they can be diagonalized through

similarity transformations (ref. 13):

A = T_A_T_ -I

B = TrTAvT_I

C = TffAeT_ -I

(4.33)

with

A(= Diag [-(u(2)/u(1)), -(u(2)/u(1)), -(u(2)/u(1)), -(u(2)/u(1) + a), -(uC2)/u (1) - a)]

A n = Diag [-(u(3)/u(1)), -(u(3)/u(1)), -(u(3)/u(1)), -(u(3)/u(1) + a), -(u(3)/u (1) - a)]

A¢ = Diag [-(u(4)/u(1)), -(u(4)/u(1)), -(u(4)/u(1)), -(u(4)/u(1) + a), -(u(4)/u (1) - a)]
(4.34)

where

U(5) [[U(2)] 2 -q-[u(3)] 2 Jr-[u(4)] 2a = Cl C2{uD---ff - 0.5 [u(1)] 2]} (4.35)

53

and T_(U), Tn(U), and T¢(U) are the matrices whose columns are the eigenvectors of A, B, and C,

respectively. When all other matrices except A, B, and C are ignored, the implicit operator is given by

OA n . OB n. OC n

LHS= [I- _-][Z - _%-j[I - _-1 (4.36)

Substituting for A, B, and C, using equation (4.33) in equation (4.36), we get

LHS =[(T_T_'I) n - Ar 0_]

0(ToAoT_I)n 0(TcAeT_ -1)n]AU n
x [(ToT_-I) n - Ar 0rI] x [(T(T_-I) n- Ar 0C

(4.37)

A modified form of equation (4.37) is obtained by moving the eigenvector matrices T_, T o, and T¢

outside the spatial differential operators 0/0_, 0/o_, and 0/0C, respectively (ref. 13):

A n n

LHS = T_[I- Ar O(_')](T_I)n(Tn)n[I- Ar 0(A°)](T_I)n(TC)n[I- _ 0(A¢)n/_r _-_](T_llnAU _O_ o77

This can be written as

LHS = T_[I- Ar0(A_)n]lglII- ArO(Ao)n]f)[I- ArO(A¢)n](T'_I)nAUn
o_ on oc"

where

1_ = T_'ITo; _-1 = T_-IT_ (4.38)

= T_-IT¢; f,-1 = T_-ITn

The eigenvector matrices are functions of f, r/and (and therefore this modification introduces further

errors of O(Ar) into the factorization process.

During the factorization process, the presence of the matrices N, Q, and S in the implicit part

were ignored. This is because, in general, the similarity transformations used for diagonalizing A do

not simultaneously diagonalize N. The same is true for the rl and C factors as well. This necessitates

some ad-hoc approximate treatment of the ignored terms, which at the same time preserves the diagonal

structure of the implicit operators. Whatever the approach used, additional approximation errors are

introduced in the treatment of the implicit operators. We chose to approximate N, Q, and S by diagonal

matrices in the implicit operators, whose values are given by the spectral radii p(N), p(Q), and p(S),

respectively (ref. 17). In addition, we also treat the added fourth-difference dissipation terms implicitly.

LHS T_[I " "O(A_)n 02[p(N)nl] _'404(I)= -'m _ + o_ _'°_--f_-)]

x lq[I Ar{O(-_)n- +

,o(&)"

02[p(Q)nI]

02[p(S)nl]

OC2

4 04(I)

j.4 c'7_(I) lvr-1

- e,,C-ff_.rj.C AU"

(4.39)

54

The matrices T_ -1, T 0 1_-1, and _-1 are given by:

f (1-[q/a2]) c2[u (2)/01z(1)]/a 2 c2[u(3)/0u(1)]/a2 c2[u(4)/u(1)]/a2 --[cola2] i

I --(u(4)/[u(1)] 2) (1/00))
T_ "1= / (u(3)/[u(1)] 2) 0 -(1/u (1)) 0 JI a(q--a[u(2)/u(1)]) a(a--c2[u(2)lu(1)]) _erc2[u(3)/u(1)] --erc2[u(4)/u (1)] ere2

\a(q + a[u(2)/u(1)]) -a(a + c2[u(2)/u(1)]) -ac2[u(3)/u(1)] --ac2[u(4)/u(1)] ac2

0 0 1 a a I

0 -u(1) [u(2)/u(1)] a[uC2)/u(1)] a[uC2)/u(1)]

TO= u0) 0 [u(3)/u(1)] a[uC3)/u(1)] a[u(3)/u(1)]

0 0 [uC4)lu(1)] a([u(4)lu(1)] + a) a([u(4)/u(1)l - a)
u (3) -u (2) [q/c2] ex[(q+a2)/c2+a(u(4)/u(1))] tx[(q+a2)/c2-a(u(4)/u(1))]

(11oooI _1 oo o o
= 0 0 1/v_ -1/v_

0 -1/v_ 1/2 1/2

0 1/v_ 1/2 1/2

0 0 1 -1/v_)

o o -°1 /o_ o
_-1 = 0 1 0 0 0

-1/x/_ 0 0 1/2 1/2

1/v_ 0 0 1/2 1/2

where a = 1/(v_uCl)a) and a = [uC1)/(v_a)].

In addition, the spectral radii of the matrices

p(N) = max(d_ 1)

d_2)

d_3)

d_4)

d_5)

p(Q)= m,=(_l)

e_3)

N, Q, and S are given by:

+ [4./3.]k3k4[1./u (1)]

+ k3k4 [1./u (1)]

•"k k3k4 [1./U (1)]

+ klk3kaks[1./u(1)])

+ k3k4[1./u (1)]

+ [4./3.]k3k411.1u cl)]

q- k3k4[1./u (1)]

+ klk3k4k5[1./u(1)])

55

p(S) = max(1)

d_ 2) ÷ ksk4[1./u (1)]

d_ 3) ÷ k3k4[1./u (1)]

d_4) + [4./3.]k3k411./u (1)]

d_5) ÷ klk3k4ks[1./u(1)])

The explicit part of the diagonal algorithm is exactly the same as in equation (4.26b) and all the

approximations are restricted to the implicit operator. Therefore, if the diagonal algorithm converges,

the steady-state solution will be identical to the one obtained without diagonalization. However, the

convergence behavior of the diagonalized algorithm would be different.

The Diagonalized Approximate Factorization algorithm is to be implemented in the following order:

Initialization

Set the boundary values of Uij,k for (i, j, k) E ODh in accordance with equation (3.7).

Set the initial values of U_i,j,k for (i, j, k) E Dh in accordance withequation (3.8).

Compute the forcing function vector, H_j,k for (i, j, k) E Dh, using equation (4.29).

Step 1: Explicit part

Compute [RHS]_,j,k for (i, j, k) • Dh.

Step 2:

Perform the matrix-vector multiplication:

[AU1] = (T_-I)nIRHS]

Step 3: (-Sweep of the Implicit part

Form and solve the following system of linear equations for AU2:

{I- Ar[D_(A_) n] -A_'[D_(p(N)nI)] + AT-[e h_D_(I)]}tAU2] = [AU1]

Step 4:

Perform the matrix-vector multiplication:

[AUa] -- I_-I[Au2]

56

Step 5: ri-Sweep of the implicit part

Form and solve the following system of linear equations for AU4:

{I - Ar[D_(A_) n] - Ar[D2(p(Q)nl)] + Ar[_ gD,_(I)]}[AU4] = [AU3]

Step 6:

Perform the matrix-vector multiplication:

[AU5] = P-I[Au4]

Step 7: C-Sweep of the implicit part

Form and solve the following system of linear equations for AU6:

_ h_D_(I)]}[AU6] = [AU5]{I - Ar[D_(A¢) n] Ar[D_(p(S)nl)] + A-r[_ 4 4

Step 8:

Perform the matrix-vector multiplication:

[nu = T¢[AUd

Step 9: Update the solution

i_+ 1 = ly _ + AU n

Steps 1-9 constitute of one iteration of the Diagonal Form of the Approximate Factorization algorithm.

The new implicit operators are block pentadiagonal. However, the blocks are diagonal in form, so

that the operators simplify into five independent scalar pentadiagonal systems. Therefore, each of the

steps 3, 5, and 7 involve the solution of multiple, independent systems of scalar pentadiagonal equations

in the three coordinate directions (, r/and _ respectively. For example, each of the five independent

57

scalar pentadiagonal systems in the _-sweep has the following structure:

d 'AU _(m)
aij,k[AU2]i_2,j,k Jr

c_) ¢.,) <(N_ 2)-t-eij,k[AU2]i+2j,k -" [AU1]id,k , for 3 < i --

(m) Cm) c 'AU ,(m)
bN_-Ij,k[AU2]N__2j,k + N_-lj,k[2]N_-l,j,k"N_-I j,k [AU2]N¢_3j,k +

(4.40)

where, (j E [2, N,? - 1]), (k E [2,N C - 1]) and (m E [1,5]). The elements of the pentadiagonal matrix

arc given by the following:

Clj,k = 1.; dld,k = 0.; elj,k = 0 (4.41a)

b,2j,k -- Av(112h_)[(A_)n]_,_:_n)_ AI"(11h_)[p(N)n]l,j,k

c2j,k= 1.+ Ar(2/h_)[p(N)n]2j,k+ Are(5)

d2_,k -- -Al-(1/2h_)[(A_)n]_mj:2) - Al-(1/h_)[p(N)nl3,j,k+/kr E(--4)

e2,j, k -- A7-E

(4.418)

a3,j, k ---- 0.0,

b3j,k = Ar(1/2h_)[(A_)n]_..:_ n)- Ar(1/h_)[p(N)n]2,j,k + A'r E (-4)

c3j,k = 1. + A'r(2/h_)[p(N)nl3,j,k + A.r _ (6)

d3,j,k _A.r(1/2h_)r(A ,m(m,m) _ A..r(1/h_)[p(N)n]4,j,k + A"rs(--4)= L _'} J4,j,k

e3,j, k -- ATe

(4.41c)

ai,j, k -- A.r E

bi,j, k = Av'(1/2h+)[(A()nllm_;m,j!k - A'r(1/h_)[p(N)n]i_l,j,k + A'r e (--4)

ci,j, k = 1. + A'rC2/h_)[p(N)nli,j,k + A.r s (6)

di,j,k _AT.(1/2h()r,^ ,m(m,m) _ A.r(1/h_)[p(N)n]i+l,j,k + A"re (--4)= tkzx_) Ji+l,j,k

ei,j, k = AT S

(4.41d)

58

aN_-2,j,k = Are

bN_-2d,k = Ar(1/2h_)[(A_)@N_'-ma),k - Ar(1/h_)[o(N)n]N_-3d, k + Ar s (-4)

cN_-2,j,k = 1. + Ar(2/h_)[p(N)n]N_-2j,k + Are (6)

A " (m,,.) Ar(1/h_)[o(N)"lN__ld,k + Ar s (-4)aN__2d,k =--Ar(1/2h()[(()]N_-ld,k--

eNg_2,j, k = 0.0.

(4.41e)

aN__lj,k -- Are

bN__l,j, k Ar(1/2h()r'" ,m(m,m) -- Ar(1/h_)_o(N)nlNe-2j, k + A.r e (--4)= [tJx_) JN_-2,j,k

cN_-ld,k = 1. + Ar(2/h_)[p(N)n]N_-ld,k + Ar e (5)

dN_-ld,k = -Ar(1/2he)[(A_)"](N_'d_,) - Ar(1/h_)[p(N)"]N_d,k

(4.41f)

aN_d, k = 0.; bN_d, k = 0.; CN_d, k = 1 (4.41g)

3.4.7.3 Symmetric successive over.relaxation algorithm- In this method, the system of linear

equations obtained after replacing the spatial derivatives appearing in the implicit operator in equa-

tion (4.25a) by second-order accurate, central finite difference operators, is solved using the symmetric,

successive over-relaxation scheme. Let the linear system be given by

[Kn][AU n] = [RHS n] (4.42)

where

K n = {I- A'r[D(A n + D_N n + Drl Bn + D2Q n +D¢C n + D_sn]} AUn, for (i,j,k) 6 Dh

It is specified that the unknowns be ordered corresponding to the gridpoints, lexicographically, such

that the index in (-direction runs fastest, followed by the index in rkdirection and finally in (-direction.

The finite-difference discretization matrix K, resulting from such an ordering has a very regular, banded

structure. There are altogether seven block diagonals, each with a (5 x 5) block size.

The matrix K can be written as the sum of the matrices D, Y and Z:

K n = D n + yn + Z n (4.43)

where
D n = Main block - diagonal of K n

yn = Three sub - block - diagonals of K n

Z n = Three super - block - diagonals of K n

59

Therefore, D is a block.diagonal matrix, while Y and Z are strictly lower and upper triangular, respec-

tively. Then the point-SSOR iteration scheme can be written as (refs. 14 and 15):

[xn][AL rn] = [RHS] (4.44)

where
X n = w(2. - w)(D n + _Yn)(Dn)-l(Dn + wZ n)

= w(2. - w)(D n + wYn)(l + w(Dn)-Iz n)
(4.45)

and w £ (0., 2.) is the over-relaxation factor (a specified constant). The SSOR algorithm is to be

implemented in following manner:

Initialization

Set the boundary values of Uid,k in accordance with equation (3.7).

Set the initial values of U_/j, k in accordance with equation (3.8).

Compute the forcing function vector, H_j,k. for (i, j, k) E Dh, using equation (4.29).

Step 1: The explicit part

Compute [RHS]_j, k for (i,j,k) £ Dh.

Step 2: Lower triangular system solution

Form and solve the following regular, sparse, block lower triangular system to get [AU1]:

(D n + wYn)[AUI] = [RHS]

Step 3: Upper triangular system solution

Form and solve the following regular, sparse, block upper triangular system to get [AUn]:

(I + w(Dn)-lzn)[AU n] = [AU1]

Step 4:

Update the solution:

u n+l = _ + [1/,.(2.- _)]Au _

Steps 1-4 constitute one complete iteration of the SSOR scheme. The l-th block row of the matrix K

has the following structure:

A n[-At][AU"]/-(Ne-21(N,,-2)+ [t3_][V]t-(N_-2) + [Cz][/"U_]t-1+ [VZ][/"U_]t
(4.46)

+ [El][AUn]l+l + [.TI][AUn]I+(N__2) + [_I][AUn]I+(N__2)(N,7_2) = [RHS]/

6O

where l -- i + (N_ - 2)(j - 1) -I- (N_ - 2)(Nrl - 2)(k- 1) and (i,j,k) e Dh. The (5 x 5) matrices

are given by:

[Al] = -A'r(-1/2h¢)[C(I_i,j,k-1)]- Ar(1/h_)[S(I_i,J,k-1)]

[Bl] "- -A'r(-1/2h_I)[B(I-_id-l,k)]- Av(1/h_)[Q(U_ij-1, k)]

[CI] -" -Ar(-ll2h_)[A(U_i-ld,k)] - A'rCllh_)[N(U_i-ld,k)]

[_t]= I + _-(2/h_)lNC_,k)] + A_-C2/h_)lQC_,k)]+ A,'C2/h_)[S(_,k)] (4.47)
let] = -ArC 1/2h_) [ACI._i+1,j,k)] - ArC 1/h_) [NC_+l_,k)]

[.T'/] = -A'r(l/2hr/)[BCI-_ij+l,k)]- A_'Cllh2)lQ(U_ij+l,k)]

[g_l= -ArCl/2h¢)[cc_,k+_)]- _-(l/h_)[sC_,j,k+_)]

Also, ..4, B and C are the elements in the l-th block row of the matrix Y, whereas E,.T" and _ are the

elements in the/-the block row of the matrix Z.

3.5 Benchmarks

There are three benchmarks associated with the three numerical schemes described in section 4,

for the solution of system of linear equations given by equation (4.25). Each benchmark consists of

running one of the three numerical schemes for Ns time steps with given values for N_, N, 7, N_ and

A-r.

3.5.1 Verification test

For each of the benchmarks, at the completion of Ns time steps, compute the following:

1. Root Mean Square norms RMSR(m), of the residual vectors [RHS(m)]_,j,k, for m = 1, 2,..., 5

where n = Ns, and (i, j, k) E D h

RMSR(m)= _k=2 - ,--,,=z _ t,,a,_) (5.1)
(N_-2)(N,7-2)(N¢-2)

rtrr,l(_) (_)
2. Root Mean Square norms RMSE(m) of the error vectors it'-' Ji,j,k -- [u'n]i,j,k)' for m =

1, 2,..., 5 where n = Ns, and (i, j, k) E Dh

l x-,(N¢-l) v.,(gn-1) E(g_-l)rru, l(m) _ [uYs](m) _2
RMSE(m) = z'k=2 2-.,j=2 i=2 1.t] (i,j,k) (i,j,k) J (5.2)

(g_- 2)(gn- 2)(g¢- 2)

61

3. The numerically evaluated surface integral given by

j2--1 i2--1

I = 0.25{ E _ h_lhT[qoid,kl + _°i+ld,kl + _ij+l,kl + cPi+l,j+l,kl

3=31 Z=tl

+ _i,j,k2 + q°i+ld,k2 + _°i,j+l,k2 + _i+l,j+l,k2]

k2-1 i2-1

+ _ _ h_h([tPidl,k + cPi+l,jl,k + _idl,k+l + _Pi+ldl,k+l
k=kl i=il

+ _oi,j2,k + _Oi+ld2,k + _id2,k+l + _Oi+l,j2,k+l]

k2-1 j2-1

+ _ _ h_h([tPild, k + _ild+l,k + _°ild,k+l + tPild+l,k+l
k=kl J=Jl

+ _i2j,k + _oi2j+l,k + _°i2j,k+l + _Oi2,j+l,k+l]}

(5.3)

where il,i2,Jl,J2, kl and k2 are specified constants, such that 1 < il < i2 < N(, 1 < Jl < J2 < No

and 1 < k 1 < k 2 < N(, and

[U(1)] 2 -I-[u(2)] 2 q- [u(3)]2))}
= c2{u(5) - 0.5(u(1) (5.4)

The validity of each these quantities is measured according to

where Xc and Xr are the computed and reference values, respectively, and e is the maximum allowable

relative error. The value of e is specified to be 10 -8. The values of Xr are dependent on the numerical

scheme under consideration and the values specified for N_, N o, N(, A_- and Ns.

3.5.2 Benchmark 1

Class A: Perform Ns = 200 iterations of the Approximate Factorization Algorithm, with the

following parameter values:

= 64; No=64; We= 64

and

Ar = 0.0008

Timing for this benchmark should begin just before the Step 1 of the first iteration is started and end

just after the Step 5 of the Ns-th iteration is complete.

Class B: Same except N_ = N o = N(= 102 and Ar = 0.0003.

62

3.5.3 Benchmark 2

Class A: Perform Ns = 400 iterations of the Diagonal Form of the Approximate Factorization

Algorithm, with the following parameter values:

= 84; N, = 64; = 64

and
A-r = 0.0015

Timing for this benchmark should begin just before the Step I of the first iteration is started and end

just after the Step 9 of the Ns-th iteration is complete.

Class B: Same except N_ = N, = N_ = 102 and A,r = 0.001.

3.5.4 Benchmark 3

Class A: Perform Ns = 250 iterations of the Symmetric Successive Over-Relaxation Algorithm

with the following parameter values:

Nt_ = 64; N, = 64; N¢ = 64

and

A-r = 2.0 w = 1.2

Timing for this benchmark should begin just before the Step 1 of the first iteration is started and end

just after the Step 4 of the Ns-th iteration is complete.

Class B: Same except N_ = N o = N_ = 102.

For all benchmarks, values of the remaining constants are specified as

kl = 1.40; k2 = 0.40; k3 = 0.10; k4 = 1.00;

C1,1 = 2.0 C2,1 = 1.0 63,1 = 2.0 C4,1 = 2.0

61,2 = 0.0 62,2 = 0.0 63,2 = 2.0 64,2 = 2.0

C1, 3 -- 0.0 62, 3 = 0.0 63,3 = 0.0 64,3 -- 0.0

C1,4 :- 4.0 62,4 -- 0.0 63,4 -- 0.0 64,4 = 0.0

C1,5 = 5.0 C2,5 = 1.0 63, 5 - 0.0 64,5 -- 0.0

61,6 -- 3.0 62,6 -- 2.0 63, 6 ---- 2.0 64,6 -- 2.0

C1,7 -- 0.5 C2,7 = 3.0 63,7 = 3.0 C4,7 = 3.0

C1,8 = 0.02 C2,8 = 0.01 C3,8 = 0.04 C4,8 = 0.03

C1, 9 -'- 0.01 C2,9 = 0.03 C3, 9 -- 0.03 C4,9 - 0.05

CI,IO -- 0.03 62,10 : 0.02 63,10 -- 0.05 C4,10 = 0.04

k5 = 1.40

65,1 = 5.0

65,2 = 4.0

C5,3 - 3.0

cs,4 = 2.0

c5,5 = o.1

65,6 = 0.4

C5,7 = 0.3

Cs,s = 0.05

C5,9 = 0.04

C5,1o = 0.03

63

C1,11 -- 0.5

C1,12 -- 0.4

CI,13 "- 0.3

C2,11 -- 0.4 C3,11 _- 0.3 C4,11 "- 0.2

C2,12 -- 0.3 C3,12 -- 0.5 C4,12 = 0.i

C2,13 -- 0.5 C3,1s = 0.4 C4,13 = 0.3

d_l)= d_2)= d_3)= dg4)= d_5)= 0.75

_ =_ =4_=_'_=_ =o_

C5,11 -- 0.1

C5,12 = 0.3

C5,13 = 0.2

64

REFERENCES

1. Bailey, D. H.; and Barton, J. T.: The NAS Kernel Benchmark Program. NASA TM-86711, Aug.

1985.

2. Pulliam, T. H.: Efficient Solution Methods for the Navier-Stokes Equations. Lecture Notes for the

Von Karman Institute for Fluid Dynamics Lecture Series: Numerical Techniques for Viscous

Flow Computation in Turbomachinery Bladings, Jan. 20-24, 1986, Brussels, Belgium.

3. Yoon. S.; Kwak, D.; and Chang, L: LU-SGS Implicit Algorithm for Three-Dimensional Incom-

pressible Navier-Stokes Equations with Source Term. AIAA Paper 89-1964-CP, 1989.

4. Jameson, A.; Schmidt, W.; and Turkel, E.: Numerical Solution of the Euler Equations by Finite

Volume Methods using Runge-Kutta T'mae-Stepping Schemes. AIAA Paper 81-1259, June 1981.

5. Steger, J. L; and Warming, R. F.: Flux Vector Splitting of the Inviseid Gas Dynamics Equations

with Applications to Finite Difference Methods. Journal of Computational Physics, vol. 40,

1981, p. 263.

6. van Leer, B.: Flux Vector Splitting for the Euler Equations. Eighth International Conference on

Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, vol. 170, Edited by E. Krause,

1982, pp. 507-512.

7. Roe, P. L.: Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. Journal of

Computational Physics, vol. 43, 1981, pp. 357-372.

8. Harten, A.: High Resolution Schemes for Hyperbolic Conservation Laws. Journal of Computational

Physiscs, vol. 49, 1983, pp. 357-393.

9. Gordon, W. J.: Blending Function Methods for Bivariate and Multivariate Interpolation. SIAM J.

Num. Analysis, vol. 8, 1971, pp. 158.

10. Warming, R. E; and Beam, R. M.: On the Construction and Application of Implicit Factored

Schemes for Conservation Laws. Symposium on Computational Fluid Dynamics, SIAM-AMS

Proceedings, vol. 11, 1978.

11. Lapiclus, L.; and Seinfeld, J. H.: Numerical Solution of Ordinary Differential Equations. Academic

Press, New York, 1971.

12. Lomax, H.: Stable Implicit and Explicit Numerical Methods for Integrating Quasi-Linear Differential

Equations with Parasitic-Stiff and Parasitic-Saddle Eigenvalues. NASA TN D-4703, 1968.

13. Pulliam, T. H.; and Chaussee, D. S.: A Diagonal Form of an Implicit Approximate Factorization

Algorithm. Journal of Computational Physics, vol. 39, 1981, p. 347.

14. Chan, T .F. and Jackson, K. R.: Nonlinearly Preconditioned Krylov Subspace Methods for Discrete

Newton Algorithms. SIAM J. Sci. Stat. Compt., vol. 5, 1984, pp. 533-542.

15. Axelsson, O.: A Generalized SSOR Method. BIT, vo1.13, 1972, pp. 443-467.

65

• o

16. Olsson, P.; and Johnson, S. L.: Boundary Modifications of the Dissipation Operators for the Three-

Dimensional Euler Equations. Journal of Scientific Computing, vol. 4, 1989, pp. 159-195.

17. Coakley, T. J.: Numerical Methods for Gas Dynamics Combining Characteristics and Conservation

Concepts. AIAA Paper 81-1257, 1981.

66

FormAoprovea
REPORT DOCUMENTATION PAGE OURNo.o7o,.0,88

Putoutr_x_q) aurd4m_r _ oolao,_uonof mtorrnamonm eOrnatm to 8refuge t hour_r r_lw. IflcJucliNg 1_ l_melot ;_;...-..--,_ _n_Uu_tJorldl._-_,,_i-, 0 _;i-fl_ _ sources,

c4)tiocbon of I¢4orrng_c_, IrloUOml) _ vor rllaucu_ mm umu_'l, w, vv_mrd_, _m_ _v_

t_s t,.l_lhm. __,.__.,_e1204, Arlington. VA 22202.,4302. _ to the Office of Idane0emem and 6uO0et, pmpen,vorkReducUo. Pro}oct (070,4-,0188),W-'-hin0ton, OC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July 1993

4. TITLE AND SUBTITLE

The NAS Parallel Benchmarks

3. REPORTTYPEANDDATESCOVERED
Technical Memorandum

5. FUNDINGNUMBERS

!ll. AUTHOR(S)

David Bailey, John Barton, Thomas Lasinski, and Horst Simon (Computer

Sciences Corporation, E1 Segundo, CA), Editors

?. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Ames Research Center

Moffett Field, CA 94035-I000

0. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

536-01-11

8. PERFORMING ORGANIZATION
REPORT NUMBER

A-91148

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASATM-103863

11. SUPPLEMENTARY NOTES

Point ofContact: Russell Cane_Ames Research Cente_MS258-5, Moffett Field, CA 94035-1000

(415)604-4999

12s. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified B Unlimited

Subject Category 59

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A new setof benchmarks has been developed for the performance evaluation of highly parallel supercomputers.
These benchmarks consist of a set of kernels, the "Parallel Kernels," and a simulated application benchmark.

Together they mimic the computation and data movement characteristics of large scale computational fluid

dynamics (CFD) applications.

The principal distinguishing feature of these benchmarks is their "pencil and paper" specification---all details

of these benchmarks are specified only aigorithmically. In this way many of the difficulties associated with

conventional benchmarking approaches on highly parallel systems are avoided.

14. SUBJECT TERMS 15.

Supercomputers, Parallel computers, Computational fluid dynamics,
le.

Benchmarking, Performance evaluation

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 1.. SECURITY CLASSIFICATION 20.
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Proocrtbed by ANSI Std, Z39-18

2B_-102

NUMBER OF PAGES

68
PRICE CODE

A04

LIMITATION OF ABSTRACT

